Files
pytorch/torch/csrc/Module.cpp
angelayi cd9ee49a69 [aoti] Add cpp loader (#135374)
* Added a cpp loader, AOTIModelPackageLoader, which can load the .pt2, build the .so, and create a runner. The python-facing API is that users can directly call the `run` function, whereas in cpp users can directly access the `runner_` if they are more familiar with that. I couldn't figure out how to bind the `get_runner()` function to python...
* Added a new config, `aot_inductor.package_cpp_only` which will **not** package the so. This means that whenever the package is loaded, we will need to build the so. This is turned off by default so that new environments do not need to rebuild their so. The `package_cpp_only` is a feature which torchchat intends to use to provide flexibility to users.
* Added a new config, `aot_inductor.metadata` which stores user-provided metadata, serialized to the pt2 as a json file. It also stores the device used when exporting, "cuda" or "cpu", so that during load time, we can use that data to determine which AOTIModelContainerRunner to use. The metadata can be accessed through `loader.get_metadata()`. TODO is to move this metadata to the toplevel `package_aoti` function so that we can remove the metadata as a config.
* Separated out `package_aoti` as a standalone function, instead of it automatically being called in inductor. This is to prepare for the case where users will compile multiple models, and want to bundle it in one package. The specific use case is in torchchat, where we want to package the separately-exported encoder and decoder layers. An example of how to use this is in `test_multiple_methods`.
* `load_package` will load a singular model, given the model name.
* The loader doesn't support windows for now, I think I need to add some more casing to make the build commands work on windows?

Differential Revision: [D62329906](https://our.internmc.facebook.com/intern/diff/D62329906)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/135374
Approved by: https://github.com/desertfire, https://github.com/malfet
2024-09-11 03:00:01 +00:00

2366 lines
74 KiB
C++

#include <ATen/DeviceAccelerator.h>
#include <fmt/core.h>
#include <sys/types.h>
#include <torch/csrc/python_headers.h>
#include <optional>
#ifndef _MSC_VER
#include <sys/socket.h>
#endif
#include <ATen/ATen.h>
#include <ATen/BlasBackend.h>
#include <ATen/CachedTensorUtils.h>
#include <ATen/DLConvertor.h>
#include <ATen/ExpandUtils.h>
#include <ATen/LegacyVmapMode.h>
#include <ATen/LinalgBackend.h>
#include <ATen/Parallel.h>
#include <ATen/Utils.h>
#include <ATen/core/Vitals.h>
#include <ATen/detail/AcceleratorHooksInterface.h>
#include <ATen/dlpack.h>
#include <ATen/native/ConvUtils.h>
#include <ATen/native/ForeachUtils.h>
#include <ATen/native/Normalization.h>
#include <c10/core/Device.h>
#include <c10/core/DispatchKeySet.h>
#include <c10/util/AbortHandler.h>
#include <c10/util/Backtrace.h>
#include <c10/util/Logging.h>
#include <c10/util/irange.h>
#include <c10/util/thread_name.h>
#include <libshm.h>
#include <pybind11/pybind11.h>
#include <pybind11/stl.h>
#include <torch/csrc/THConcat.h>
#include <torch/csrc/utils/pybind.h>
#include <cstdlib>
#include <iostream>
#include <unordered_map>
#include <ATen/ThreadLocalPythonObjects.h>
#include <torch/csrc/DataLoader.h>
#include <torch/csrc/Device.h>
#include <torch/csrc/Dtype.h>
#include <torch/csrc/DynamicTypes.h>
#include <torch/csrc/Event.h>
#include <torch/csrc/Generator.h>
#include <torch/csrc/Layout.h>
#include <torch/csrc/MemoryFormat.h>
#include <torch/csrc/QScheme.h>
#include <torch/csrc/Stream.h>
#include <torch/csrc/THP.h>
#include <torch/csrc/TypeInfo.h>
#include <torch/csrc/api/include/torch/python/init.h>
#include <torch/csrc/autograd/generated/python_return_types.h>
#include <torch/csrc/autograd/python_cpp_function.h>
#include <torch/csrc/autograd/python_enum_tag.h>
#include <torch/csrc/autograd/python_fft_functions.h>
#include <torch/csrc/autograd/python_function.h>
#include <torch/csrc/autograd/python_legacy_variable.h>
#include <torch/csrc/autograd/python_linalg_functions.h>
#include <torch/csrc/autograd/python_nested_functions.h>
#include <torch/csrc/autograd/python_nn_functions.h>
#include <torch/csrc/autograd/python_sparse_functions.h>
#include <torch/csrc/autograd/python_special_functions.h>
#include <torch/csrc/autograd/python_variable.h>
#include <torch/csrc/cpu/Module.h>
#include <torch/csrc/dynamo/init.h>
#include <torch/csrc/functorch/init.h>
#include <torch/csrc/fx/node.h>
#include <torch/csrc/inductor/aoti_package/pybind.h>
#include <torch/csrc/inductor/aoti_runner/pybind.h>
#include <torch/csrc/instruction_counter/Module.h>
#include <torch/csrc/jit/python/init.h>
#include <torch/csrc/jit/python/python_ir.h>
#include <torch/csrc/jit/python/python_tracer.h>
#include <torch/csrc/jit/serialization/pickler.h>
#include <torch/csrc/lazy/python/init.h>
#include <torch/csrc/monitor/python_init.h>
#include <torch/csrc/mps/Module.h>
#include <torch/csrc/mtia/Module.h>
#include <torch/csrc/multiprocessing/init.h>
#include <torch/csrc/onnx/init.h>
#include <torch/csrc/profiler/python/init.h>
#include <torch/csrc/tensor/python_tensor.h>
#include <torch/csrc/utils/disable_torch_function.h>
#include <torch/csrc/utils/init.h>
#include <torch/csrc/utils/pycfunction_helpers.h>
#include <torch/csrc/utils/python_arg_parser.h>
#include <torch/csrc/utils/python_compat.h>
#include <torch/csrc/utils/python_dispatch.h>
#include <torch/csrc/utils/python_strings.h>
#include <torch/csrc/utils/tensor_dtypes.h>
#include <torch/csrc/utils/tensor_layouts.h>
#include <torch/csrc/utils/tensor_memoryformats.h>
#include <torch/csrc/utils/tensor_new.h>
#include <torch/csrc/utils/tensor_numpy.h>
#include <torch/csrc/utils/tensor_qschemes.h>
#include <torch/csrc/utils/verbose.h>
#include <ATen/native/transformers/sdp_utils_cpp.h>
#include <torch/csrc/profiler/combined_traceback.h>
#include <sstream>
#ifdef USE_CUDA
#include <ATen/cuda/CUDAConfig.h>
#include <ATen/native/transformers/cuda/sdp_utils.h>
#ifdef __HIP_PLATFORM_AMD__
#include <ATen/native/cudnn/hip/BatchNorm.h>
#else
#include <ATen/native/cudnn/BatchNorm.h>
#endif
#endif
#ifdef USE_DISTRIBUTED
#ifdef USE_C10D
#include <torch/csrc/distributed/autograd/python_autograd.h>
#include <torch/csrc/distributed/c10d/c10d.h>
#include <torch/csrc/distributed/rpc/rpc.h>
#include <torch/csrc/distributed/rpc/testing/testing.h>
#endif
#endif
#if defined(USE_VALGRIND)
#include <callgrind.h>
#endif
namespace py = pybind11;
PyObject* module;
THPGenerator* THPDefaultCPUGenerator = nullptr;
////////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////////
static PyObject* THPModule_initNames(PyObject* self, PyObject* arg) {
HANDLE_TH_ERRORS
static std::vector<std::string> names;
THPObjectPtr types(PySequence_Fast(arg, "expected a sequence"));
if (!types)
return nullptr;
// NOLINTNEXTLINE(bugprone-branch-clone)
auto num_classes = PySequence_Fast_GET_SIZE(types.get());
names.reserve(names.size() + num_classes);
for (Py_ssize_t i = 0; i < num_classes; i++) {
PyObject* obj = PySequence_Fast_GET_ITEM(types.get(), i);
TORCH_CHECK(PyType_Check(obj), "expected a PyTypeObject");
PyTypeObject* type = (PyTypeObject*)obj;
THPObjectPtr module_name(PyObject_GetAttrString(obj, "__module__"));
if (!module_name)
return nullptr;
TORCH_CHECK(
THPUtils_checkString(module_name.get()),
"expected __module__ to be a string");
std::string name = THPUtils_unpackString(module_name.get());
names.emplace_back(name + "." + type->tp_name);
type->tp_name = names.back().c_str();
}
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
//
// Callback for python part. Used for additional initialization of python
// classes
static PyObject* THPModule_initExtension(
PyObject* _unused,
PyObject* shm_manager_path) {
HANDLE_TH_ERRORS
#if !defined(FBCODE_CAFFE2) && !defined(__aarch64__)
if (torch::get_cpp_stacktraces_enabled()) {
c10::SetStackTraceFetcher([]() -> std::string {
auto tb = torch::CapturedTraceback::gather(false, false, true);
if (torch::get_symbolize_mode() == torch::unwind::Mode::addr2line) {
LOG(WARNING)
<< "symbolizing C++ stack trace for exception; if this hangs, rerun with TORCH_DISABLE_ADDR2LINE=1..."
<< std::endl;
}
auto s_tbs = torch::symbolize({tb.get()});
std::stringstream oss;
oss << "C++ CapturedTraceback:" << std::endl;
const auto& s_tb = s_tbs.tracebacks.at(0);
for (auto idx : c10::irange(s_tb.size())) {
// Skip the first few frames:
// #1 torch::CapturedTraceback::gather(bool, bool, bool)
// #2 THPModule_initExtension
// #3 THPModule_initExtension(_object*, _object*)::{lambda()#1}
if (idx <= 3) {
continue;
}
auto frame_id = s_tb[idx];
const auto& frame = s_tbs.all_frames.at(frame_id);
oss << "#" << idx << " " << frame.funcname << " from " << frame.filename
<< ":" << frame.lineno << std::endl;
}
return oss.str();
});
}
#endif
if (!THPUtils_checkString(shm_manager_path)) {
THPUtils_setError(
"initialization error - expected bytes/string object as shm_manager_path!");
return nullptr;
}
torch::utils::initializeLayouts();
torch::utils::initializeMemoryFormats();
torch::utils::initializeQSchemes();
torch::utils::initializeDtypes();
torch::tensors::initialize_python_bindings();
std::string path = THPUtils_unpackString(shm_manager_path);
libshm_init(path.c_str());
auto module = THPObjectPtr(PyImport_ImportModule("torch"));
if (!module)
throw python_error();
THPStorage_postInit(module);
THPAutograd_initFunctions();
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
// The idea behind these two functions is to make it easy to test if we are
// built with ASAN: they're designed not to crash if ASAN is not enabled, but
// to trigger ASAN if it is enabled. This lets us run a "canary" tests which
// checks if our build environment is misconfigured.
static PyObject* THPModule_crashIfCsrcASAN(PyObject* module, PyObject* arg) {
HANDLE_TH_ERRORS
TORCH_CHECK(
THPUtils_checkLong(arg),
"crash_if_csrc_asan expects an int, but got ",
THPUtils_typename(arg));
// NOLINTNEXTLINE(cppcoreguidelines-avoid-c-arrays, modernize-avoid-c-arrays)
volatile char x[3];
x[THPUtils_unpackInt(arg)] = 0;
// NOLINTNEXTLINE(clang-analyzer-core.CallAndMessage)
return THPUtils_packInt32(x[0]);
END_HANDLE_TH_ERRORS
}
static PyObject* THPModule_crashIfCsrcUBSAN(PyObject* module, PyObject* arg) {
HANDLE_TH_ERRORS
TORCH_CHECK(
THPUtils_checkLong(arg),
"crash_if_csrc_ubsan expects an int, but got ",
THPUtils_typename(arg));
int32_t x = THPUtils_unpackInt(arg);
double y = 1.0 / x;
return THPUtils_packInt32((int)y);
END_HANDLE_TH_ERRORS
}
static PyObject* THPModule_crashIfvptrUBSAN(PyObject* module, PyObject* noarg) {
// This code should work perfectly fine, as vtables are identical for Foo and
// Baz unless rtti and ubsan are enabled
struct Foo {
virtual int bar() = 0;
virtual ~Foo() = default;
};
struct Baz {
virtual int bar() {
return 17;
}
virtual ~Baz() = default;
};
Baz x{};
auto y = static_cast<Foo*>(static_cast<void*>(&x));
auto rc = y->bar();
return THPUtils_packInt32(rc);
}
static PyObject* THPModule_crashIfATenASAN(PyObject* module, PyObject* arg) {
HANDLE_TH_ERRORS
TORCH_CHECK(
THPUtils_checkLong(arg),
"crash_if_aten_asan expects an int, "
"but got ",
THPUtils_typename(arg));
return THPUtils_packInt32(at::_crash_if_asan(THPUtils_unpackInt(arg)));
END_HANDLE_TH_ERRORS
}
static PyObject* THPModule_abort(PyObject* module, PyObject* noargs) {
std::terminate();
Py_RETURN_NONE;
}
static PyObject* THPModule_crashIfDebugAssertsFail(
PyObject* module,
PyObject* arg) {
HANDLE_TH_ERRORS
TORCH_CHECK(
THPUtils_checkLong(arg),
"crash_if_debug_asserts_fail expects an int, but got ",
THPUtils_typename(arg));
TORCH_INTERNAL_ASSERT_DEBUG_ONLY(
THPUtils_unpackInt(arg) != 424242,
"Expect anything but 424242 as an input for debug builds");
return THPUtils_packInt32(0);
END_HANDLE_TH_ERRORS
}
static PyObject* THPModule_getNumThreads(PyObject* module, PyObject* noargs) {
return THPUtils_packInt32(at::get_num_threads());
}
static PyObject* THPModule_setNumThreads(PyObject* module, PyObject* arg) {
HANDLE_TH_ERRORS
TORCH_CHECK(
THPUtils_checkLong(arg),
"set_num_threads expects an int, but got ",
THPUtils_typename(arg));
int nthreads = (int)THPUtils_unpackLong(arg);
TORCH_CHECK(nthreads > 0, "set_num_threads expects a positive integer");
at::set_num_threads(nthreads);
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
static PyObject* THPModule_getNumInteropThreads(
PyObject* module,
PyObject* noargs) {
return THPUtils_packInt32(at::get_num_interop_threads());
}
static PyObject* THPModule_setNumInteropThreads(
PyObject* module,
PyObject* arg) {
HANDLE_TH_ERRORS
TORCH_CHECK(
THPUtils_checkLong(arg),
"set_num_interop_threads expects an int, "
"but got ",
THPUtils_typename(arg));
int nthreads = (int)THPUtils_unpackLong(arg);
TORCH_CHECK(
nthreads > 0, "set_num_interop_threads expects a positive integer");
at::set_num_interop_threads(nthreads);
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
PyObject* THPModule_setDefaultTensorType(PyObject* _unused, PyObject* type) {
HANDLE_TH_ERRORS
torch::tensors::py_set_default_tensor_type(type);
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
PyObject* THPModule_setDefaultDtype(PyObject* _unused, PyObject* dtype) {
HANDLE_TH_ERRORS
torch::tensors::py_set_default_dtype(dtype);
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
PyObject* THPModule_swap_tensor_impl(PyObject* _unused, PyObject* args) {
HANDLE_TH_ERRORS
PyObject* a_ = nullptr;
PyObject* b_ = nullptr;
if (!PyArg_ParseTuple(args, "OO", &a_, &b_)) {
return nullptr;
}
// Ensure we have Tensors
TORCH_CHECK(THPVariable_Check(a_));
TORCH_CHECK(THPVariable_Check(b_));
THPVariable* a = reinterpret_cast<THPVariable*>(a_);
THPVariable* b = reinterpret_cast<THPVariable*>(b_);
// weak_use_count() adds 1 if use_count is non-zero
TORCH_CHECK(
a->cdata->weak_use_count() == 1,
"Expected no weakrefs to t1's Tensor object but got ",
a->cdata->weak_use_count() - 1);
TORCH_CHECK(
b->cdata->weak_use_count() == 1,
"Expected no weakrefs to t2's Tensor object but got ",
b->cdata->weak_use_count() - 1);
// Swap the Tensor Impl
c10::MaybeOwned<at::Tensor> tmp = a->cdata;
// The TensorImpls contain PyObjectSlots that have a reference to the PyObject
// associated with the TensorImpl. Swap this field as well.
std::optional<PyObject*> mb_obj_a =
a->cdata->unsafeGetTensorImpl()->pyobj_slot()->check_pyobj(
getPyInterpreter(), /*ignore_hermetic_tls=*/false);
std::optional<PyObject*> mb_obj_b =
b->cdata->unsafeGetTensorImpl()->pyobj_slot()->check_pyobj(
getPyInterpreter(), /*ignore_hermetic_tls=*/false);
TORCH_INTERNAL_ASSERT(
mb_obj_a.has_value() && mb_obj_b.has_value(),
"Both tensors should have PyObjects tagged by the current python interpreter");
TORCH_CHECK(mb_obj_a.value() == a_);
TORCH_CHECK(mb_obj_b.value() == b_);
a->cdata = b->cdata;
b->cdata = tmp;
a->cdata->unsafeGetTensorImpl()->pyobj_slot()->init_pyobj(
getPyInterpreter(), a_, c10::impl::PyInterpreterStatus::TAGGED_BY_US);
b->cdata->unsafeGetTensorImpl()->pyobj_slot()->init_pyobj(
getPyInterpreter(), b_, c10::impl::PyInterpreterStatus::TAGGED_BY_US);
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
PyObject* THPModule_addDocStr(PyObject* _unused, PyObject* args) {
// adds a __doc__ string to a function, similar to numpy's arr_add_docstring
static std::vector<std::string> all_docs;
PyObject* obj = nullptr;
PyObject* doc_obj = nullptr;
if (!PyArg_ParseTuple(args, "OO", &obj, &doc_obj)) {
return nullptr;
}
const char* doc_str = "<invalid string>";
if (THPUtils_checkString(doc_obj)) {
all_docs.push_back(THPUtils_unpackString(doc_obj));
doc_str = all_docs.back().c_str();
}
if (Py_TYPE(obj) == &PyCFunction_Type) {
PyCFunctionObject* f = (PyCFunctionObject*)obj;
if (f->m_ml->ml_doc) {
return PyErr_Format(
PyExc_RuntimeError,
"function '%s' already has a docstring",
f->m_ml->ml_name);
}
f->m_ml->ml_doc = doc_str;
} else if (strcmp(Py_TYPE(obj)->tp_name, "method_descriptor") == 0) {
PyMethodDescrObject* m = (PyMethodDescrObject*)obj;
if (m->d_method->ml_doc) {
return PyErr_Format(
PyExc_RuntimeError,
"method '%s' already has a docstring",
m->d_method->ml_name);
}
m->d_method->ml_doc = doc_str;
} else if (strcmp(Py_TYPE(obj)->tp_name, "getset_descriptor") == 0) {
// NOLINTNEXTLINE(cppcoreguidelines-pro-type-cstyle-cast)
PyGetSetDescrObject* m = (PyGetSetDescrObject*)obj;
if (m->d_getset->doc) {
return PyErr_Format(
PyExc_RuntimeError,
"attribute '%s' already has a docstring",
m->d_getset->name);
}
m->d_getset->doc = doc_str;
} else if (Py_TYPE(obj) == &PyType_Type) {
PyTypeObject* t = (PyTypeObject*)obj;
if (t->tp_doc) {
return PyErr_Format(
PyExc_RuntimeError, "Type '%s' already has a docstring", t->tp_name);
}
t->tp_doc = doc_str;
} else {
return PyErr_Format(
PyExc_TypeError,
"don't know how to add docstring to type '%s'",
Py_TYPE(obj)->tp_name);
}
Py_INCREF(obj);
return obj;
}
PyObject* THPModule_inferSize(PyObject* _unused, PyObject* args) {
HANDLE_TH_ERRORS
Py_ssize_t num_args = args ? (Py_ssize_t)PyTuple_Size(args) : 0;
TORCH_CHECK(num_args == 2, "expected exactly 2 arguments");
PyObject* arg1 = PyTuple_GET_ITEM(args, 0);
TORCH_CHECK(THPSize_Check(arg1), "expected a torch.Size as argument 1");
PyObject* arg2 = PyTuple_GET_ITEM(args, 1);
TORCH_CHECK(THPSize_Check(arg2), "expected a torch.Size as argument 2");
auto size1 = THPUtils_unpackLongs(arg1);
auto size2 = THPUtils_unpackLongs(arg2);
auto sizes = at::infer_size(size1, size2);
return THPSize_NewFromSizes(static_cast<int64_t>(sizes.size()), sizes.data());
END_HANDLE_TH_ERRORS
}
static PyObject* THPModule_setBackcompatBroadcastWarn(
PyObject* module,
PyObject* arg) {
HANDLE_TH_ERRORS
TORCH_CHECK(
PyBool_Check(arg),
"set_backcompat_broadcast_warn expects a bool, "
"but got ",
THPUtils_typename(arg));
setBackCompatBroadcastWarn(arg == Py_True);
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
static PyObject* THPModule_getBackcompatBroadcastWarn(
PyObject* module,
PyObject* noargs) {
if (getBackCompatBroadcastWarn())
Py_RETURN_TRUE;
else
Py_RETURN_FALSE;
}
static PyObject* THPModule_setBackcompatKeepdimWarn(
PyObject* module,
PyObject* arg) {
HANDLE_TH_ERRORS
TORCH_CHECK(
PyBool_Check(arg),
"set_backcompat_keepdim_warn expects a bool, "
"but got ",
THPUtils_typename(arg));
setBackCompatKeepdimWarn(arg == Py_True);
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
static PyObject* THPModule_getBackcompatKeepdimWarn(
PyObject* module,
PyObject* noargs) {
if (getBackCompatKeepdimWarn())
Py_RETURN_TRUE;
else
Py_RETURN_FALSE;
}
PyObject* THPModule_hasDistributed(PyObject* _unused, PyObject* noargs) {
#ifdef USE_DISTRIBUTED
Py_RETURN_TRUE;
#else
Py_RETURN_FALSE;
#endif
}
static PyObject* THPModule_showConfig(PyObject* module, PyObject* noargs) {
HANDLE_TH_ERRORS
return THPUtils_packString(at::show_config());
END_HANDLE_TH_ERRORS
}
static PyObject* THPModule_cxxFlags(PyObject* module, PyObject* noargs) {
HANDLE_TH_ERRORS
return THPUtils_packString(at::get_cxx_flags());
END_HANDLE_TH_ERRORS
}
static PyObject* THPModule_parallelInfo(PyObject* module, PyObject* noargs) {
HANDLE_TH_ERRORS
return THPUtils_packString(at::get_parallel_info());
END_HANDLE_TH_ERRORS
}
static PyObject* THPModule_getCpuCapability(
PyObject* module,
PyObject* noargs) {
HANDLE_TH_ERRORS
return THPUtils_packString(at::get_cpu_capability());
END_HANDLE_TH_ERRORS
}
void DLPack_Capsule_Destructor(PyObject* data) {
if (C10_LIKELY(!PyCapsule_IsValid(data, "dltensor"))) {
// early out, see DLPack spec: if a consuming library sets the capsule
// name to something else, they own it and we don't need to do anything
return;
}
HANDLE_TH_ERRORS
// Causes overheads for validity checks again, but this case is rare
// since consuming libraries should rename the capsule according to spec.
// Note that this cannot set a python error (we checked validity above),
// so we don't need to handle python error state here.
DLManagedTensor* dlMTensor =
(DLManagedTensor*)PyCapsule_GetPointer(data, "dltensor");
// the dlMTensor has not been consumed, call deleter ourselves.
// DLPack spec mentions that deleter may be NULL, but deleter from
// `at::toDLPack` is never NULL, so no need for an additional check here.
dlMTensor->deleter(dlMTensor);
END_HANDLE_TH_ERRORS_RET()
}
PyObject* THPModule_toDLPack(PyObject* _unused, PyObject* data) {
HANDLE_TH_ERRORS
TORCH_CHECK(THPVariable_Check(data), "data must be a Tensor");
DLManagedTensor* dlMTensor = at::toDLPack(THPVariable_Unpack(data));
return PyCapsule_New(dlMTensor, "dltensor", DLPack_Capsule_Destructor);
END_HANDLE_TH_ERRORS
}
PyObject* THPModule_fromDLPack(PyObject* _unused, PyObject* data) {
using namespace torch::autograd;
HANDLE_TH_ERRORS
auto tensor = torch::utils::tensor_fromDLPack(data);
return THPVariable_Wrap(tensor);
END_HANDLE_TH_ERRORS
}
PyObject* THModule_getCppBacktrace(PyObject* _unused, PyObject* args) {
HANDLE_TH_ERRORS
size_t frames_to_skip = 0;
size_t maximum_number_of_frames = 0;
if (!PyArg_ParseTuple(
args, "LL", &frames_to_skip, &maximum_number_of_frames)) {
return nullptr;
}
return THPUtils_packString(
c10::get_backtrace(frames_to_skip, maximum_number_of_frames, true));
END_HANDLE_TH_ERRORS
}
static PyObject* THModule_rename_privateuse1_backend(
PyObject* _unused,
PyObject* arg) {
HANDLE_TH_ERRORS
TORCH_CHECK(
THPUtils_checkString(arg),
"_rename_privateuse1_backend expects a str, but got ",
THPUtils_typename(arg));
const std::string backend_name = THPUtils_unpackString(arg);
c10::register_privateuse1_backend(backend_name);
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
static PyObject* THModule_get_privateuse1_backend_name(
PyObject* _unused,
PyObject* arg) {
HANDLE_TH_ERRORS
return THPUtils_packString(c10::get_privateuse1_backend());
END_HANDLE_TH_ERRORS
}
PyObject* THPModule_setAllowTF32CuDNN(PyObject* _unused, PyObject* arg) {
HANDLE_TH_ERRORS
TORCH_CHECK(
PyBool_Check(arg),
"set_allow_tf32_cublas expects a bool, "
"but got ",
THPUtils_typename(arg));
at::globalContext().setAllowTF32CuDNN(arg == Py_True);
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
PyObject* THPModule_allowTF32CuDNN(PyObject* _unused, PyObject* noargs) {
if (at::globalContext().allowTF32CuDNN())
Py_RETURN_TRUE;
else
Py_RETURN_FALSE;
}
PyObject* THPModule_setFloat32MatmulPrecision(
PyObject* _unused,
PyObject* arg) {
HANDLE_TH_ERRORS
TORCH_CHECK(
THPUtils_checkString(arg),
"set_float32_matmul_precision expects a str, "
"but got ",
THPUtils_typename(arg));
std::string s = THPUtils_unpackString(arg);
at::globalContext().setFloat32MatmulPrecision(s);
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
PyObject* THPModule_float32MatmulPrecision(
PyObject* _unused,
PyObject* noargs) {
std::string s = "highest";
auto p = at::globalContext().float32MatmulPrecision();
if (p == at::Float32MatmulPrecision::HIGH) {
s = "high";
} else if (p == at::Float32MatmulPrecision::MEDIUM) {
s = "medium";
}
return THPUtils_packString(s);
}
PyObject* THPModule_setSDPUseFlash(PyObject* _unused, PyObject* arg) {
HANDLE_TH_ERRORS
TORCH_CHECK(
PyBool_Check(arg),
"set_sdp_use_math expects a bool, "
"but got ",
THPUtils_typename(arg));
at::globalContext().setSDPUseFlash(arg == Py_True);
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
PyObject* THPModule_userEnabledFlashSDP(PyObject* _unused, PyObject* noargs) {
if (at::globalContext().userEnabledFlashSDP())
Py_RETURN_TRUE;
else
Py_RETURN_FALSE;
}
PyObject* THPModule_setSDPUseMemEfficient(PyObject* _unused, PyObject* arg) {
HANDLE_TH_ERRORS
TORCH_CHECK(
PyBool_Check(arg),
"set_sdp_use_math expects a bool, "
"but got ",
THPUtils_typename(arg));
at::globalContext().setSDPUseMemEfficient(arg == Py_True);
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
PyObject* userEnabledMemEfficientSDP(PyObject* _unused, PyObject* noargs) {
if (at::globalContext().userEnabledMemEfficientSDP())
Py_RETURN_TRUE;
else
Py_RETURN_FALSE;
}
PyObject* THPModule_setSDPUseMath(PyObject* _unused, PyObject* arg) {
HANDLE_TH_ERRORS
TORCH_CHECK(
PyBool_Check(arg),
"set_sdp_use_math expects a bool, "
"but got ",
THPUtils_typename(arg));
at::globalContext().setSDPUseMath(arg == Py_True);
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
PyObject* THPModule_userEnabledMathSDP(PyObject* _unused, PyObject* noargs) {
if (at::globalContext().userEnabledMathSDP())
Py_RETURN_TRUE;
else
Py_RETURN_FALSE;
}
PyObject* THPModule_setSDPUseOverrideable(PyObject* _unused, PyObject* arg) {
HANDLE_TH_ERRORS
TORCH_CHECK(
PyBool_Check(arg),
"set_sdp_use_overrideable expects a bool, "
"but got ",
THPUtils_typename(arg));
at::globalContext().setSDPUseOverrideable(arg == Py_True);
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
PyObject* THPModule_userEnabledOverrideableSDP(
PyObject* _unused,
PyObject* noargs) {
if (at::globalContext().userEnabledOverrideableSDP())
Py_RETURN_TRUE;
else
Py_RETURN_FALSE;
}
PyObject* THPModule_setSDPUseCuDNN(PyObject* _unused, PyObject* arg) {
HANDLE_TH_ERRORS
TORCH_CHECK(
PyBool_Check(arg),
"set_sdp_use_cudnn expects a bool, "
"but got %s",
THPUtils_typename(arg));
at::globalContext().setSDPUseCuDNN(arg == Py_True);
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
PyObject* THPModule_userEnabledCuDNNSDP(PyObject* _unused, PyObject* noargs) {
if (at::globalContext().userEnabledCuDNNSDP())
Py_RETURN_TRUE;
else
Py_RETURN_FALSE;
}
PyObject* THPModule_setUserEnabledCuDNN(PyObject* _unused, PyObject* arg) {
HANDLE_TH_ERRORS
TORCH_CHECK(
PyBool_Check(arg),
"set_enabled_cudnn expects a bool, "
"but got ",
THPUtils_typename(arg));
at::globalContext().setUserEnabledCuDNN(arg == Py_True);
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
PyObject* THPModule_userEnabledCuDNN(PyObject* _unused, PyObject* noargs) {
if (at::globalContext().userEnabledCuDNN())
Py_RETURN_TRUE;
else
Py_RETURN_FALSE;
}
PyObject* THPModule_setUserEnabledMkldnn(PyObject* _unused, PyObject* arg) {
HANDLE_TH_ERRORS
TORCH_CHECK(
PyBool_Check(arg),
"set_enabled_mkldnn expects a bool, "
"but got ",
THPUtils_typename(arg));
at::globalContext().setUserEnabledMkldnn(arg == Py_True);
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
PyObject* THPModule_userEnabledMkldnn(PyObject* _unused, PyObject* noargs) {
if (at::globalContext().userEnabledMkldnn())
Py_RETURN_TRUE;
else
Py_RETURN_FALSE;
}
PyObject* THPModule_setDeterministicCuDNN(PyObject* _unused, PyObject* arg) {
HANDLE_TH_ERRORS
TORCH_CHECK(
PyBool_Check(arg),
"set_deterministic_cudnn expects a bool, "
"but got ",
THPUtils_typename(arg));
at::globalContext().setDeterministicCuDNN(arg == Py_True);
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
PyObject* THPModule_deterministicCuDNN(PyObject* _unused, PyObject* noargs) {
if (at::globalContext().deterministicCuDNN())
Py_RETURN_TRUE;
else
Py_RETURN_FALSE;
}
PyObject* THPModule_setDeterministicMkldnn(PyObject* _unused, PyObject* arg) {
HANDLE_TH_ERRORS
TORCH_CHECK(
PyBool_Check(arg),
"set_deterministic_mkldnn expects a bool, "
"but got ",
THPUtils_typename(arg));
at::globalContext().setDeterministicMkldnn(arg == Py_True);
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
PyObject* THPModule_deterministicMkldnn(PyObject* _unused, PyObject* noargs) {
if (at::globalContext().deterministicMkldnn())
Py_RETURN_TRUE;
else
Py_RETURN_FALSE;
}
PyObject* THPModule_setDeterministicAlgorithms(
PyObject* _unused,
PyObject* args,
PyObject* kwargs) {
HANDLE_TH_ERRORS
static torch::PythonArgParser parser(
{"_set_deterministic_algorithms(bool mode, *, bool warn_only=False)"});
torch::ParsedArgs<2> parsed_args{};
auto r = parser.parse(args, kwargs, parsed_args);
bool mode = r.toBool(0);
bool warn_only = r.toBool(1);
at::globalContext().setDeterministicAlgorithms(mode, warn_only);
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
PyObject* THPModule_deterministicAlgorithms(
PyObject* _unused,
PyObject* noargs) {
if (at::globalContext().deterministicAlgorithms()) {
Py_RETURN_TRUE;
}
Py_RETURN_FALSE;
}
PyObject* THPModule_deterministicAlgorithmsWarnOnly(
PyObject* _unused,
PyObject* noargs) {
if (at::globalContext().deterministicAlgorithmsWarnOnly()) {
Py_RETURN_TRUE;
}
Py_RETURN_FALSE;
}
PyObject* THPModule_setDeterministicFillUninitializedMemory(
PyObject* _unused,
PyObject* arg) {
HANDLE_TH_ERRORS
TORCH_CHECK(
PyBool_Check(arg), "expected a bool, but got ", THPUtils_typename(arg));
at::globalContext().setDeterministicFillUninitializedMemory(arg == Py_True);
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
PyObject* THPModule_deterministicFillUninitializedMemory(
PyObject* _unused,
PyObject* noargs) {
if (at::globalContext().deterministicFillUninitializedMemory())
Py_RETURN_TRUE;
else
Py_RETURN_FALSE;
}
PyObject* THPModule_setUserEnabledNNPACK(PyObject* _unused, PyObject* arg) {
HANDLE_TH_ERRORS
TORCH_CHECK(
PyBool_Check(arg),
"set_enabled_NNPACK expects a bool, "
"but got ",
THPUtils_typename(arg));
at::globalContext().setUserEnabledNNPACK(arg == Py_True);
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
PyObject* THPModule_userEnabledNNPACK(PyObject* _unused, PyObject* noargs) {
if (at::globalContext().userEnabledNNPACK())
Py_RETURN_TRUE;
else
Py_RETURN_FALSE;
}
PyObject* THPModule_setWarnAlways(PyObject* _unused, PyObject* arg) {
HANDLE_TH_ERRORS
TORCH_CHECK(
PyBool_Check(arg),
"setWarnOnlyOnce expects a bool, "
"but got ",
THPUtils_typename(arg));
c10::WarningUtils::set_warnAlways(arg == Py_True);
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
PyObject* THPModule_warnAlways(PyObject* _unused, PyObject* noargs) {
if (c10::WarningUtils::get_warnAlways()) {
Py_RETURN_TRUE;
}
Py_RETURN_FALSE;
}
// Used only for testing C++ to Python warning translations.
PyObject* THPModule_warn(PyObject* _unused, PyObject* noargs) {
HANDLE_TH_ERRORS
TORCH_WARN("Test message for TORCH_WARN");
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
// Used only for testing C++ to Python warning translations.
PyObject* THPModule_warnDeprecation(PyObject* _unused, PyObject* noargs) {
HANDLE_TH_ERRORS
TORCH_WARN_DEPRECATION("Test message for TORCH_WARN_DEPRECATION");
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
PyObject* THPModule_setBenchmarkCuDNN(PyObject* _unused, PyObject* arg) {
HANDLE_TH_ERRORS
TORCH_CHECK(
PyBool_Check(arg),
"set_benchmark_cudnn expects a bool, "
"but got ",
THPUtils_typename(arg));
at::globalContext().setBenchmarkCuDNN(arg == Py_True);
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
PyObject* THPModule_benchmarkCuDNN(PyObject* _unused, PyObject* noargs) {
if (at::globalContext().benchmarkCuDNN()) {
Py_RETURN_TRUE;
}
Py_RETURN_FALSE;
}
PyObject* THPModule_setAllowTF32CuBLAS(PyObject* _unused, PyObject* arg) {
HANDLE_TH_ERRORS
TORCH_CHECK(
PyBool_Check(arg),
"set_allow_tf32_cublas expects a bool, "
"but got ",
THPUtils_typename(arg));
at::globalContext().setAllowTF32CuBLAS(arg == Py_True);
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
PyObject* THPModule_allowTF32CuBLAS(PyObject* _unused, PyObject* noargs) {
if (at::globalContext().allowTF32CuBLAS()) {
Py_RETURN_TRUE;
}
Py_RETURN_FALSE;
}
PyObject* THPModule_setAllowFP16ReductionCuBLAS(
PyObject* _unused,
PyObject* arg) {
HANDLE_TH_ERRORS
TORCH_CHECK(
PyBool_Check(arg),
"set_allow_fp16_reduction_cublas expects a bool, "
"but got ",
THPUtils_typename(arg));
at::globalContext().setAllowFP16ReductionCuBLAS(arg == Py_True);
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
PyObject* THPModule_allowFP16ReductionCuBLAS(
PyObject* _unused,
PyObject* noargs) {
if (at::globalContext().allowFP16ReductionCuBLAS()) {
Py_RETURN_TRUE;
}
Py_RETURN_FALSE;
}
PyObject* THPModule_setAllowBF16ReductionCuBLAS(
PyObject* _unused,
PyObject* arg) {
HANDLE_TH_ERRORS
TORCH_CHECK(
PyBool_Check(arg),
"set_allow_bf16_reduction_cublas expects a bool, "
"but got ",
THPUtils_typename(arg));
at::globalContext().setAllowBF16ReductionCuBLAS(arg == Py_True);
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
PyObject* THPModule_allowBF16ReductionCuBLAS(
PyObject* _unused,
PyObject* noargs) {
if (at::globalContext().allowBF16ReductionCuBLAS()) {
Py_RETURN_TRUE;
}
Py_RETURN_FALSE;
}
PyObject* THPModule_setAllowFP16ReductionCPU(PyObject* _unused, PyObject* arg) {
HANDLE_TH_ERRORS
TORCH_CHECK(
PyBool_Check(arg),
"set_allow_fp16_reduction_cpu expects a bool, "
"but got ",
THPUtils_typename(arg));
at::globalContext().setAllowFP16ReductionCPU(arg == Py_True);
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
PyObject* THPModule_allowFP16ReductionCPU(PyObject* _unused, PyObject* noargs) {
if (at::globalContext().allowFP16ReductionCPU()) {
Py_RETURN_TRUE;
}
Py_RETURN_FALSE;
}
PyObject* THPModule_setFlushDenormal(PyObject* _unused, PyObject* arg) {
HANDLE_TH_ERRORS
TORCH_CHECK(
PyBool_Check(arg),
"flush_denormal expects a bool, "
"but got ",
THPUtils_typename(arg));
if (!at::globalContext().setFlushDenormal(arg == Py_True)) {
Py_RETURN_FALSE;
};
Py_RETURN_TRUE;
END_HANDLE_TH_ERRORS
}
PyObject* THPModule_getDefaultDtype(PyObject* _unused, PyObject* arg) {
HANDLE_TH_ERRORS
auto scalar_type = torch::tensors::get_default_scalar_type();
return Py_NewRef(torch::getTHPDtype(scalar_type));
END_HANDLE_TH_ERRORS
}
PyObject* THPModule_getDefaultDevice(PyObject* _unused, PyObject* arg) {
HANDLE_TH_ERRORS
return THPUtils_packString(c10::DeviceTypeName(
dispatchKeyToDeviceType(torch::tensors::get_default_dispatch_key()),
/*lower_case=*/true));
END_HANDLE_TH_ERRORS
}
PyObject* THPModule_setQEngine(PyObject* /* unused */, PyObject* arg) {
HANDLE_TH_ERRORS
TORCH_CHECK(
THPUtils_checkLong(arg),
"set_qengine expects an int, "
"but got ",
THPUtils_typename(arg));
auto qengine = THPUtils_unpackLong(arg);
at::globalContext().setQEngine(static_cast<at::QEngine>(qengine));
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
PyObject* THPModule_qEngine(PyObject* _unused, PyObject* noargs) {
return THPUtils_packInt64(
static_cast<int64_t>(at::globalContext().qEngine()));
}
PyObject* THPModule_supportedQEngines(PyObject* _unused, PyObject* noargs) {
auto qengines = at::globalContext().supportedQEngines();
auto list =
THPObjectPtr(PyList_New(static_cast<Py_ssize_t>(qengines.size())));
if (!list)
return nullptr;
for (const auto i : c10::irange(qengines.size())) {
PyObject* i64 = THPUtils_packInt64(static_cast<int64_t>(qengines[i]));
if (!i64)
return nullptr;
PyList_SET_ITEM(list.get(), i, i64);
}
return list.release();
}
PyObject* THPModule_isEnabledXNNPACK(PyObject* _unused, PyObject* noargs) {
if (at::globalContext().isXNNPACKAvailable())
Py_RETURN_TRUE;
else
Py_RETURN_FALSE;
}
PyObject* THPModule_setCheckSparseTensorInvariants(
PyObject* _unused,
PyObject* arg) {
HANDLE_TH_ERRORS
TORCH_CHECK(
PyBool_Check(arg),
"set_check_sparse_tensor_invariants expects a bool, "
"but got ",
THPUtils_typename(arg));
at::globalContext().setCheckSparseTensorInvariants(arg == Py_True);
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
PyObject* THPModule_checkSparseTensorInvariants(
PyObject* _unused,
PyObject* noargs) {
if (at::globalContext().checkSparseTensorInvariants())
Py_RETURN_TRUE;
else
Py_RETURN_FALSE;
}
PyObject* THPModule_willEngineExecuteNode(PyObject* _unused, PyObject* arg) {
HANDLE_TH_ERRORS
bool isTHPFunction = THPFunction_Check(arg);
bool isTHPCppFunction = torch::autograd::THPCppFunction_Check(arg);
TORCH_CHECK(
isTHPFunction || isTHPCppFunction,
"_will_engine_execute_node expects an grad_fn, "
"but got ",
THPUtils_typename(arg));
const auto exec_info = torch::autograd::get_current_graph_task_exec_info();
TORCH_CHECK(
exec_info,
"_get_should_execute_nodes should only be called during the backward pass");
torch::autograd::Node* node = nullptr;
std::shared_ptr<torch::autograd::Node> node_sp;
if (isTHPFunction) {
node_sp = ((THPFunction*)arg)->cdata.lock();
node = node_sp.get();
} else {
node = ((torch::autograd::THPCppFunction*)arg)->cdata.get();
}
const auto nodes_in_graph =
torch::autograd::get_current_graph_task_nodes_in_graph();
bool ret = nodes_in_graph->find(node) != nodes_in_graph->end();
if (ret && !exec_info->empty()) {
auto it = exec_info->find(node);
if (it == exec_info->end() || !it->second.should_execute()) {
ret = false;
} else {
TORCH_CHECK(
!(node->topological_nr() == 0 && it->second.captures_),
"A leaf node was passed to _will_engine_execute_node but we are "
"currently running autograd.grad(). This is currently not supported.");
}
}
if (ret) {
Py_RETURN_TRUE;
} else {
Py_RETURN_FALSE;
}
END_HANDLE_TH_ERRORS
}
PyObject* THPModule_getCurrentGraphTaskExecutionOrder(
PyObject* _unused,
PyObject* noargs) {
HANDLE_TH_ERRORS
std::vector<torch::autograd::Node*> nodes =
torch::autograd::get_current_graph_task_execution_order();
TORCH_CHECK(
!nodes.empty(),
"_current_graph_task_execution_order should only be called during the backward pass");
auto list = THPObjectPtr(PyList_New(static_cast<Py_ssize_t>(nodes.size())));
if (!list)
return nullptr;
for (const auto i : c10::irange(nodes.size())) {
// This node is guaranteed to be alive since the backward is still running
PyObject* pyobj_node =
torch::autograd::functionToPyObject(nodes[i]->getptr());
PyList_SET_ITEM(list.get(), i, pyobj_node);
}
return list.release();
END_HANDLE_TH_ERRORS
}
PyObject* THPModule_getCurrentGraphTaskId(PyObject* _unused, PyObject* noargs) {
HANDLE_TH_ERRORS
return THPUtils_packInt64(torch::autograd::get_current_graph_task_id());
END_HANDLE_TH_ERRORS
}
PyObject* THPModule_getCurrentNode(PyObject* _unused, PyObject* noargs) {
HANDLE_TH_ERRORS
return torch::autograd::functionToPyObject(
torch::autograd::get_current_node());
END_HANDLE_TH_ERRORS
}
PyObject* THPModule_setDefaultMobileCPUAllocator(
PyObject* _unused,
PyObject* noargs) {
HANDLE_TH_ERRORS
at::globalContext().setDefaultMobileCPUAllocator();
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
PyObject* THPModule_unsetDefaultMobileCPUAllocator(
PyObject* _unused,
PyObject* noargs) {
HANDLE_TH_ERRORS
at::globalContext().unsetDefaultMobileCPUAllocator();
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
static PyObject* THPModule_vmapmode_increment_nesting(
PyObject* _unused,
PyObject* arg) {
HANDLE_TH_ERRORS
return THPUtils_packInt64(at::impl::VmapMode::increment_nesting());
END_HANDLE_TH_ERRORS
}
static PyObject* THPModule_vmapmode_decrement_nesting(
PyObject* _unused,
PyObject* arg) {
HANDLE_TH_ERRORS
return THPUtils_packInt64(at::impl::VmapMode::decrement_nesting());
END_HANDLE_TH_ERRORS
}
static PyObject* THPModule_set_display_vmap_fallback_warnings_mode(
PyObject* _unused,
PyObject* arg) {
HANDLE_TH_ERRORS
TORCH_CHECK(
PyBool_Check(arg),
"enabled must be a bool, "
"but got ",
THPUtils_typename(arg));
at::globalContext().setDisplayVmapFallbackWarnings(arg == Py_True);
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
static PyObject* THPModule_are_vmap_fallback_warnings_enabled(
PyObject* _unused,
PyObject* arg) {
HANDLE_TH_ERRORS
if (at::globalContext().areVmapFallbackWarningsEnabled()) {
Py_RETURN_TRUE;
} else {
Py_RETURN_FALSE;
}
END_HANDLE_TH_ERRORS
}
static PyMethodDef TorchMethods[] = { // NOLINT
{"_initExtension", THPModule_initExtension, METH_O, nullptr},
{"_autograd_init", THPAutograd_initExtension, METH_NOARGS, nullptr},
{"_add_docstr", THPModule_addDocStr, METH_VARARGS, nullptr},
{"_swap_tensor_impl", THPModule_swap_tensor_impl, METH_VARARGS, nullptr},
{"_init_names", THPModule_initNames, METH_O, nullptr},
{"_has_distributed", THPModule_hasDistributed, METH_NOARGS, nullptr},
{"_set_default_tensor_type",
THPModule_setDefaultTensorType,
METH_O,
nullptr},
{"_set_default_dtype", THPModule_setDefaultDtype, METH_O, nullptr},
{"_infer_size", THPModule_inferSize, METH_VARARGS, nullptr},
{"_abort", THPModule_abort, METH_NOARGS, nullptr},
{"_crash_if_csrc_asan", THPModule_crashIfCsrcASAN, METH_O, nullptr},
{"_crash_if_csrc_ubsan", THPModule_crashIfCsrcUBSAN, METH_O, nullptr},
{"_crash_if_vptr_ubsan", THPModule_crashIfvptrUBSAN, METH_NOARGS, nullptr},
{"_crash_if_aten_asan", THPModule_crashIfATenASAN, METH_O, nullptr},
{"_crash_if_debug_asserts_fail",
THPModule_crashIfDebugAssertsFail,
METH_O,
nullptr},
{"_show_config", THPModule_showConfig, METH_NOARGS, nullptr},
{"_cxx_flags", THPModule_cxxFlags, METH_NOARGS, nullptr},
{"_parallel_info", THPModule_parallelInfo, METH_NOARGS, nullptr},
{"_get_cpu_capability", THPModule_getCpuCapability, METH_NOARGS, nullptr},
{"_set_backcompat_broadcast_warn",
THPModule_setBackcompatBroadcastWarn,
METH_O,
nullptr},
{"_get_backcompat_broadcast_warn",
THPModule_getBackcompatBroadcastWarn,
METH_NOARGS,
nullptr},
{"_set_backcompat_keepdim_warn",
THPModule_setBackcompatKeepdimWarn,
METH_O,
nullptr},
{"_get_backcompat_keepdim_warn",
THPModule_getBackcompatKeepdimWarn,
METH_NOARGS,
nullptr},
{"get_num_threads", THPModule_getNumThreads, METH_NOARGS, nullptr},
{"set_num_threads", THPModule_setNumThreads, METH_O, nullptr},
{"get_num_interop_threads",
THPModule_getNumInteropThreads,
METH_NOARGS,
nullptr},
{"set_num_interop_threads",
THPModule_setNumInteropThreads,
METH_O,
nullptr},
{"_get_flash_sdp_enabled",
THPModule_userEnabledFlashSDP,
METH_NOARGS,
nullptr},
{"_set_sdp_use_flash", THPModule_setSDPUseFlash, METH_O, nullptr},
{"_get_mem_efficient_sdp_enabled",
userEnabledMemEfficientSDP,
METH_NOARGS,
nullptr},
{"_set_sdp_use_mem_efficient",
THPModule_setSDPUseMemEfficient,
METH_O,
nullptr},
{"_get_math_sdp_enabled",
THPModule_userEnabledMathSDP,
METH_NOARGS,
nullptr},
{"_set_sdp_use_math", THPModule_setSDPUseMath, METH_O, nullptr},
{"_get_overrideable_sdp_enabled",
THPModule_userEnabledOverrideableSDP,
METH_NOARGS,
nullptr},
{"_set_sdp_use_overrideable",
THPModule_setSDPUseOverrideable,
METH_O,
nullptr},
{"_get_cudnn_sdp_enabled",
THPModule_userEnabledCuDNNSDP,
METH_NOARGS,
nullptr},
{"_set_sdp_use_cudnn", THPModule_setSDPUseCuDNN, METH_O, nullptr},
{"_get_cudnn_enabled", THPModule_userEnabledCuDNN, METH_NOARGS, nullptr},
{"_set_cudnn_enabled", THPModule_setUserEnabledCuDNN, METH_O, nullptr},
{"_get_mkldnn_enabled", THPModule_userEnabledMkldnn, METH_NOARGS, nullptr},
{"_set_mkldnn_enabled", THPModule_setUserEnabledMkldnn, METH_O, nullptr},
{"_get_cudnn_allow_tf32", THPModule_allowTF32CuDNN, METH_NOARGS, nullptr},
{"_set_cudnn_allow_tf32", THPModule_setAllowTF32CuDNN, METH_O, nullptr},
{"_get_cudnn_benchmark", THPModule_benchmarkCuDNN, METH_NOARGS, nullptr},
{"_set_cudnn_benchmark", THPModule_setBenchmarkCuDNN, METH_O, nullptr},
{"_get_cudnn_deterministic",
THPModule_deterministicCuDNN,
METH_NOARGS,
nullptr},
{"_set_cudnn_deterministic",
THPModule_setDeterministicCuDNN,
METH_O,
nullptr},
{"_get_mkldnn_deterministic",
THPModule_deterministicMkldnn,
METH_NOARGS,
nullptr},
{"_set_mkldnn_deterministic",
THPModule_setDeterministicMkldnn,
METH_O,
nullptr},
{"_get_deterministic_algorithms",
THPModule_deterministicAlgorithms,
METH_NOARGS,
nullptr},
{"_get_deterministic_algorithms_warn_only",
THPModule_deterministicAlgorithmsWarnOnly,
METH_NOARGS,
nullptr},
{"_set_deterministic_algorithms",
castPyCFunctionWithKeywords(THPModule_setDeterministicAlgorithms),
METH_VARARGS | METH_KEYWORDS,
nullptr},
{"_get_deterministic_fill_uninitialized_memory",
THPModule_deterministicFillUninitializedMemory,
METH_NOARGS,
nullptr},
{"_set_deterministic_fill_uninitialized_memory",
THPModule_setDeterministicFillUninitializedMemory,
METH_O,
nullptr},
{"_get_nnpack_enabled", THPModule_userEnabledNNPACK, METH_NOARGS, nullptr},
{"_set_nnpack_enabled", THPModule_setUserEnabledNNPACK, METH_O, nullptr},
{"_get_warnAlways", THPModule_warnAlways, METH_NOARGS, nullptr},
{"_set_warnAlways", THPModule_setWarnAlways, METH_O, nullptr},
{"_warn", THPModule_warn, METH_NOARGS, nullptr},
{"_warn_deprecation", THPModule_warnDeprecation, METH_NOARGS, nullptr},
{"_get_cublas_allow_tf32", THPModule_allowTF32CuBLAS, METH_NOARGS, nullptr},
{"_set_cublas_allow_tf32", THPModule_setAllowTF32CuBLAS, METH_O, nullptr},
{"_get_float32_matmul_precision",
THPModule_float32MatmulPrecision,
METH_NOARGS,
nullptr},
{"_set_float32_matmul_precision",
THPModule_setFloat32MatmulPrecision,
METH_O,
nullptr},
{"_get_cublas_allow_fp16_reduced_precision_reduction",
THPModule_allowFP16ReductionCuBLAS,
METH_NOARGS,
nullptr},
{"_set_cublas_allow_fp16_reduced_precision_reduction",
THPModule_setAllowFP16ReductionCuBLAS,
METH_O,
nullptr},
{"_get_cublas_allow_bf16_reduced_precision_reduction",
THPModule_allowBF16ReductionCuBLAS,
METH_NOARGS,
nullptr},
{"_set_cublas_allow_bf16_reduced_precision_reduction",
THPModule_setAllowBF16ReductionCuBLAS,
METH_O,
nullptr},
{"_get_cpu_allow_fp16_reduced_precision_reduction",
THPModule_allowFP16ReductionCPU,
METH_NOARGS,
nullptr},
{"_set_cpu_allow_fp16_reduced_precision_reduction",
THPModule_setAllowFP16ReductionCPU,
METH_O,
nullptr},
{"_vmapmode_increment_nesting",
THPModule_vmapmode_increment_nesting,
METH_NOARGS,
nullptr},
{"_vmapmode_decrement_nesting",
THPModule_vmapmode_decrement_nesting,
METH_NOARGS,
nullptr},
{"_debug_only_display_vmap_fallback_warnings",
THPModule_set_display_vmap_fallback_warnings_mode,
METH_O,
nullptr},
{"_debug_only_are_vmap_fallback_warnings_enabled",
THPModule_are_vmap_fallback_warnings_enabled,
METH_NOARGS,
nullptr},
{"_to_dlpack", THPModule_toDLPack, METH_O, nullptr},
{"_from_dlpack", THPModule_fromDLPack, METH_O, nullptr},
{"_get_cpp_backtrace", THModule_getCppBacktrace, METH_VARARGS, nullptr},
{"_rename_privateuse1_backend",
THModule_rename_privateuse1_backend,
METH_O,
nullptr},
{"_get_privateuse1_backend_name",
THModule_get_privateuse1_backend_name,
METH_NOARGS,
nullptr},
{"set_flush_denormal", THPModule_setFlushDenormal, METH_O, nullptr},
{"get_default_dtype", THPModule_getDefaultDtype, METH_NOARGS, nullptr},
{"_get_default_device", THPModule_getDefaultDevice, METH_NOARGS, nullptr},
{"_get_qengine", THPModule_qEngine, METH_NOARGS, nullptr},
{"_set_qengine", THPModule_setQEngine, METH_O, nullptr},
{"_supported_qengines", THPModule_supportedQEngines, METH_NOARGS, nullptr},
{"_is_xnnpack_enabled", THPModule_isEnabledXNNPACK, METH_NOARGS, nullptr},
{"_set_check_sparse_tensor_invariants",
THPModule_setCheckSparseTensorInvariants,
METH_O,
nullptr},
{"_check_sparse_tensor_invariants",
THPModule_checkSparseTensorInvariants,
METH_NOARGS,
nullptr},
{"_will_engine_execute_node",
THPModule_willEngineExecuteNode,
METH_O,
nullptr},
{"_current_graph_task_execution_order",
THPModule_getCurrentGraphTaskExecutionOrder,
METH_NOARGS,
nullptr},
{"_current_graph_task_id",
THPModule_getCurrentGraphTaskId,
METH_NOARGS,
nullptr},
{"_current_autograd_node", THPModule_getCurrentNode, METH_NOARGS, nullptr},
{"_set_default_mobile_cpu_allocator",
THPModule_setDefaultMobileCPUAllocator,
METH_NOARGS,
nullptr},
{"_unset_default_mobile_cpu_allocator",
THPModule_unsetDefaultMobileCPUAllocator,
METH_NOARGS,
nullptr},
{"_is_torch_function_enabled",
THPModule_isEnabledTorchFunction,
METH_NOARGS,
nullptr},
{"_is_torch_function_all_disabled",
THPModule_isAllDisabledTorchFunction,
METH_NOARGS,
nullptr},
{"_disabled_torch_function_impl",
THPModule_disable_torch_function,
METH_VARARGS,
nullptr},
{"_disabled_torch_dispatch_impl",
THPModule_disable_torch_dispatch,
METH_VARARGS,
nullptr},
{"_has_torch_function", THPModule_has_torch_function, METH_O, nullptr},
{"_has_torch_function_unary",
THPModule_has_torch_function_unary,
METH_O,
nullptr},
{"_has_torch_function_variadic",
(PyCFunction)(void (*)())THPModule_has_torch_function_variadic,
METH_FASTCALL,
nullptr},
{nullptr, nullptr, 0, nullptr}};
void THCPStream_init(PyObject* module);
void THCPEvent_init(PyObject* module);
void THCPGraph_init(PyObject* module);
void THCPMemPool_init(PyObject* module);
#ifdef USE_CUDA
PyMethodDef* THCPModule_methods();
namespace torch::cuda {
void initModule(PyObject* module);
} // namespace torch::cuda
#endif
#ifdef USE_XPU
PyMethodDef* THXPModule_methods();
void THXPStream_init(PyObject* module);
void THXPEvent_init(PyObject* module);
namespace torch::xpu {
void initModule(PyObject* module);
} // namespace torch::xpu
#endif
#ifdef USE_ITT
namespace torch::profiler {
void initIttBindings(PyObject* module);
} // namespace torch::profiler
#endif
static std::vector<PyMethodDef> methods;
// In Python we can't use the trick of C10_LOG_API_USAGE_ONCE
// Guaranteed to be invoked from Python under GIL, no locking on map needed
static void LogAPIUsageOnceFromPython(const std::string& event) {
static std::unordered_set<std::string> seen;
if (!seen.count(event)) {
seen.insert(event);
c10::LogAPIUsage(event);
}
}
static void LogAPIUsageMetadataFromPython(
const std::string& event,
const std::map<std::string, std::string>& metadata_map) {
c10::LogAPIUsageMetadata(event, metadata_map);
}
// Weak reference to tensor, used to test a tensor isn't leaked
class WeakTensorRef {
c10::weak_intrusive_ptr<c10::TensorImpl> weakref_;
public:
WeakTensorRef(const at::Tensor& t) : weakref_(t.getIntrusivePtr()) {}
bool expired() {
return weakref_.expired();
}
};
extern "C" C10_EXPORT PyObject* initModule();
// separate decl and defn for msvc error C2491
PyObject* initModule() {
HANDLE_TH_ERRORS
c10::initLogging();
c10::set_terminate_handler();
at::internal::lazy_init_num_threads();
C10_LOG_API_USAGE_ONCE("torch.python.import");
#define ASSERT_TRUE(cmd) \
if (!(cmd)) \
return nullptr
THPUtils_addPyMethodDefs(methods, TorchMethods);
THPUtils_addPyMethodDefs(methods, DataLoaderMethods);
THPUtils_addPyMethodDefs(methods, torch::autograd::python_functions());
THPUtils_addPyMethodDefs(methods, torch::multiprocessing::python_functions());
THPUtils_addPyMethodDefs(methods, torch::mps::python_functions());
#ifdef USE_CUDA
THPUtils_addPyMethodDefs(methods, THCPModule_methods());
#endif
#ifdef USE_XPU
THPUtils_addPyMethodDefs(methods, THXPModule_methods());
#endif
#if defined(USE_DISTRIBUTED) && defined(USE_C10D)
THPUtils_addPyMethodDefs(
methods, torch::distributed::c10d::python_functions());
#ifndef _WIN32
THPUtils_addPyMethodDefs(
methods, torch::distributed::rpc::python_functions());
THPUtils_addPyMethodDefs(
methods, torch::distributed::autograd::python_functions());
THPUtils_addPyMethodDefs(
methods, torch::distributed::rpc::testing::python_functions());
#endif
#endif
static struct PyModuleDef torchmodule = {
PyModuleDef_HEAD_INIT, "torch._C", nullptr, -1, methods.data()};
module = PyModule_Create(&torchmodule);
ASSERT_TRUE(module);
ASSERT_TRUE(THPGenerator_init(module));
ASSERT_TRUE(THPException_init(module));
THPSize_init(module);
THPDtype_init(module);
THPDTypeInfo_init(module);
THPLayout_init(module);
THPMemoryFormat_init(module);
THPQScheme_init(module);
THPDevice_init(module);
THPStream_init(module);
THPEvent_init(module);
NodeBase_init(module);
NodeIter_init(module);
ASSERT_TRUE(THPVariable_initModule(module));
ASSERT_TRUE(THPFunction_initModule(module));
ASSERT_TRUE(THPEngine_initModule(module));
// NOTE: We need to be able to access OperatorExportTypes from ONNX for use in
// the export side of JIT, so this ONNX init needs to appear before the JIT
// init.
torch::onnx::initONNXBindings(module);
torch::autograd::initEnumTag(module);
torch::jit::initJITBindings(module);
torch::monitor::initMonitorBindings(module);
torch::impl::dispatch::initDispatchBindings(module);
torch::dynamo::initDynamoBindings(module);
torch::functorch::impl::initFuncTorchBindings(module);
torch::throughput_benchmark::initThroughputBenchmarkBindings(module);
torch::autograd::initReturnTypes(module);
torch::autograd::initNNFunctions(module);
torch::autograd::initFFTFunctions(module);
torch::autograd::initLinalgFunctions(module);
torch::autograd::initNestedFunctions(module);
torch::autograd::initSparseFunctions(module);
torch::autograd::initSpecialFunctions(module);
torch::autograd::init_legacy_variable(module);
torch::profiler::initPythonBindings(module);
torch::python::init_bindings(module);
torch::lazy::initLazyBindings(module);
torch::inductor::initAOTIRunnerBindings(module);
torch::inductor::initAOTIPackageBindings(module);
#ifdef USE_ITT
torch::profiler::initIttBindings(module);
#endif
#ifdef USE_CUDA
torch::cuda::initModule(module);
#endif
#ifdef USE_XPU
torch::xpu::initModule(module);
#endif
torch::mtia::initModule(module);
torch::cpu::initModule(module);
torch::instruction_counter::initModule(module);
torch::initVerboseBindings(module);
ASSERT_TRUE(THPStorage_init(module));
#ifdef USE_CUDA
// This will only initialise base classes and attach them to library namespace
// They won't be ready for real usage until importing cuda module, that will
// complete the process (but it defines Python classes before calling back
// into C, so these lines have to execute first)..
THCPStream_init(module);
THCPEvent_init(module);
THCPGraph_init(module);
THCPMemPool_init(module);
#endif
#ifdef USE_XPU
THXPStream_init(module);
THXPEvent_init(module);
#endif
auto set_module_attr =
[&](const char* name, PyObject* v, bool incref = true) {
// PyModule_AddObject steals reference
if (incref) {
Py_INCREF(v);
}
int ret = PyModule_AddObject(module, name, v);
if (ret != 0) {
Py_DECREF(v);
}
return ret == 0;
};
#if defined(USE_CUDNN) || defined(USE_ROCM)
PyObject* has_cudnn = Py_True;
#else
PyObject* has_cudnn = Py_False;
#endif
ASSERT_TRUE(set_module_attr("_has_cudnn", has_cudnn));
#if defined(USE_CUSPARSELT)
PyObject* has_cusparselt = Py_True;
#else
PyObject* has_cusparselt = Py_False;
#endif
ASSERT_TRUE(set_module_attr("_has_cusparselt", has_cusparselt));
#if AT_MKL_ENABLED() || AT_POCKETFFT_ENABLED()
PyObject* has_spectral = Py_True;
#else
PyObject* has_spectral = Py_False;
#endif
ASSERT_TRUE(set_module_attr("has_spectral", has_spectral));
// force ATen to initialize because it handles
// setting up TH Errors so that they throw C++ exceptions
at::init();
// Automatically translate errors thrown from pybind11 functions
py::register_exception_translator([](std::exception_ptr e) { // NOLINT
try {
if (e) {
std::rethrow_exception(e);
}
}
CATCH_TH_ERRORS()
});
auto py_module = py::reinterpret_borrow<py::module>(module);
py_module.def("_demangle", &c10::demangle);
py_module.def("_log_api_usage_once", &LogAPIUsageOnceFromPython);
py_module.def("_log_api_usage_metadata", &LogAPIUsageMetadataFromPython);
py_module.def("vitals_enabled", &at::vitals::torchVitalEnabled);
py_module.def(
"set_vital",
[](const std::string& vital,
const std::string& attr,
const std::string& value) {
return at::vitals::VitalsAPI.setVital(vital, attr, value);
});
py_module.def(
"read_vitals", []() { return at::vitals::VitalsAPI.readVitals(); });
py_module.def(
"init_num_threads",
torch::wrap_pybind_function(at::init_num_threads),
R"(
init_num_threads()
Initializes the number of parallel threads used on the current thread.
Call this whenever a new thread is created in order to propagate values from
:func:`torch.set_num_threads` onto the new thread.
)");
py_module.def("_set_cached_tensors_enabled", [](bool enabled) {
at::caching::set_cached_tensors_enabled(enabled);
});
py_module.def("_add_cached_tensor", [](const at::Tensor& t) {
at::caching::add_cached_tensor(t);
});
py_module.def("_remove_cached_tensor", [](const at::Tensor& t) {
at::caching::remove_cached_tensor(t);
});
py_module.def("_is_cached_tensor", [](const at::Tensor& t) {
return at::caching::is_cached_tensor(t);
});
ASSERT_TRUE(
set_module_attr("has_openmp", at::hasOpenMP() ? Py_True : Py_False));
ASSERT_TRUE(set_module_attr("has_mkl", at::hasMKL() ? Py_True : Py_False));
ASSERT_TRUE(
set_module_attr("has_lapack", at::hasLAPACK() ? Py_True : Py_False));
py_module.def("_valgrind_supported_platform", []() {
#if defined(USE_VALGRIND)
return true;
#else
return false;
#endif
});
py_module.def("_valgrind_toggle", []() {
#if defined(USE_VALGRIND)
CALLGRIND_TOGGLE_COLLECT;
#else
TORCH_CHECK(false, "Valgrind is not supported.");
#endif
});
py_module.def("_valgrind_toggle_and_dump_stats", []() {
#if defined(USE_VALGRIND)
// NB: If we don't toggle collect around dump stats, callgrind_annotate
// won't process the results correctly. Specifically,
// `callgrind_annotate --inclusive=no` will be almost completely empty.
CALLGRIND_TOGGLE_COLLECT;
CALLGRIND_DUMP_STATS;
#else
TORCH_CHECK(false, "Valgrind is not supported.");
#endif
});
py::class_<WeakTensorRef>(py_module, "_WeakTensorRef")
.def(py::init([](py::object tensor) {
return WeakTensorRef(THPVariable_Unpack(tensor.ptr()));
}))
.def("expired", &WeakTensorRef::expired);
py::enum_<at::native::ConvBackend>(py_module, "_ConvBackend")
.value("CudaDepthwise2d", at::native::ConvBackend::CudaDepthwise2d)
.value("CudaDepthwise3d", at::native::ConvBackend::CudaDepthwise3d)
.value("Cudnn", at::native::ConvBackend::Cudnn)
.value("CudnnTranspose", at::native::ConvBackend::CudnnTranspose)
.value("Empty", at::native::ConvBackend::Empty)
.value("Miopen", at::native::ConvBackend::Miopen)
.value("MiopenDepthwise", at::native::ConvBackend::MiopenDepthwise)
.value("MiopenTranspose", at::native::ConvBackend::MiopenTranspose)
.value("Mkldnn", at::native::ConvBackend::Mkldnn)
.value("MkldnnEmpty", at::native::ConvBackend::MkldnnEmpty)
.value("NnpackSpatial", at::native::ConvBackend::NnpackSpatial)
.value("Overrideable", at::native::ConvBackend::Overrideable)
.value("Slow2d", at::native::ConvBackend::Slow2d)
.value("Slow3d", at::native::ConvBackend::Slow3d)
.value("SlowDilated2d", at::native::ConvBackend::SlowDilated2d)
.value("SlowDilated3d", at::native::ConvBackend::SlowDilated3d)
.value("SlowTranspose2d", at::native::ConvBackend::SlowTranspose2d)
.value("SlowTranspose3d", at::native::ConvBackend::SlowTranspose3d)
.value(
"Winograd3x3Depthwise", at::native::ConvBackend::Winograd3x3Depthwise)
.value("Xnnpack2d", at::native::ConvBackend::Xnnpack2d)
.value("Mps", at::native::ConvBackend::Mps)
.value("MpsTranspose,", at::native::ConvBackend::MpsTranspose);
py_module.def(
"_select_conv_backend",
[](const at::Tensor& input,
const at::Tensor& weight,
const std::optional<at::Tensor>& bias_opt,
at::SymIntArrayRef stride_,
at::SymIntArrayRef padding_,
at::SymIntArrayRef dilation_,
bool transposed_,
at::SymIntArrayRef output_padding_,
c10::SymInt groups_) {
return at::native::select_conv_backend(
input,
weight,
bias_opt,
stride_,
padding_,
dilation_,
transposed_,
output_padding_,
std::move(groups_),
std::nullopt);
},
py::arg("input"),
py::arg("weight"),
py::arg("bias"),
py::arg("stride"),
py::arg("padding"),
py::arg("dilation"),
py::arg("transposed"),
py::arg("output_padding"),
py::arg("groups"));
// overload for bias_sizes_opt/backward TODO: figure out default value
py_module.def(
"_select_conv_backend",
[](const at::Tensor& input,
const at::Tensor& weight,
const std::optional<at::Tensor>& bias,
at::SymIntArrayRef stride_,
at::SymIntArrayRef padding_,
at::SymIntArrayRef dilation_,
bool transposed_,
at::SymIntArrayRef output_padding_,
c10::SymInt groups_,
std::optional<std::vector<c10::SymInt>> bias_sizes_opt) {
c10::OptionalArrayRef<c10::SymInt> ref = std::nullopt;
if (bias_sizes_opt) {
ref = (*bias_sizes_opt);
}
return at::native::select_conv_backend(
input,
weight,
bias,
stride_,
padding_,
dilation_,
transposed_,
output_padding_,
std::move(groups_),
ref);
},
py::arg("input"),
py::arg("weight"),
py::arg("bias"),
py::arg("stride"),
py::arg("padding"),
py::arg("dilation"),
py::arg("transposed"),
py::arg("output_padding"),
py::arg("groups"),
py::arg("bias_sizes"));
py_module.def(
"_conv_determine_backend_memory_format",
at::native::_determine_backend_memory_format);
////////////////////////////////////////////////////////////////////////////////
// Scaled Dot Product Attention utilities
////////////////////////////////////////////////////////////////////////////////
py::class_<sdp::sdp_params>(py_module, "_SDPAParams")
.def(py::init([](at::Tensor const& query,
at::Tensor const& key,
at::Tensor const& value,
std::optional<at::Tensor> attn_mask,
double dropout,
bool is_causal,
bool enable_gqa) {
return sdp::sdp_params{
query,
key,
value,
std::move(attn_mask),
dropout,
is_causal,
enable_gqa};
}))
.def_readonly("query", &sdp::sdp_params::query)
.def_readonly("key", &sdp::sdp_params::key)
.def_readonly("value", &sdp::sdp_params::value)
.def_readonly("attn_mask", &sdp::sdp_params::attn_mask)
.def_readonly("dropout", &sdp::sdp_params::dropout)
.def_readonly("is_causal", &sdp::sdp_params::is_causal)
.def_readonly("enable_gqa", &sdp::sdp_params::enable_gqa);
py::enum_<sdp::SDPBackend>(
py_module,
"_SDPBackend",
"An enum-like class that contains the different backends for scaled dot product attention.\n\n... warning:: This class is in beta and subject to change.\n\n"
"This backend class is designed to be used with the sdpa_kernel context manager."
"See :func: torch.nn.attention.sdpa_kernel for more details.")
.value("ERROR", sdp::SDPBackend::error)
.value("MATH", sdp::SDPBackend::math)
.value("FLASH_ATTENTION", sdp::SDPBackend::flash_attention)
.value("EFFICIENT_ATTENTION", sdp::SDPBackend::efficient_attention)
.value("CUDNN_ATTENTION", sdp::SDPBackend::cudnn_attention)
.value("OVERRIDEABLE", sdp::SDPBackend::overrideable);
py_module.def("_is_flash_attention_available", []() {
#ifdef USE_CUDA
return sdp::is_flash_attention_available();
#else
return false;
#endif
});
py_module.def(
"_can_use_flash_attention",
[](const sdp::sdp_params& params, bool debug) {
#ifdef USE_CUDA
return sdp::can_use_flash_attention(params, debug);
#else
return false;
#endif
});
py_module.def(
"_can_use_mem_efficient_attention",
[](const sdp::sdp_params& params, bool debug) {
#ifdef USE_CUDA
return sdp::can_use_mem_efficient_attention(params, debug);
#else
return false;
#endif
});
py_module.def(
"_can_use_cudnn_attention",
[](const sdp::sdp_params& params, bool debug) {
#ifdef USE_CUDA
return sdp::can_use_cudnn_attention(params, debug);
#else
return false;
#endif
});
py::enum_<at::LinalgBackend>(py_module, "_LinalgBackend")
.value("Default", at::LinalgBackend::Default)
.value("Cusolver", at::LinalgBackend::Cusolver)
.value("Magma", at::LinalgBackend::Magma);
py_module.def("_set_linalg_preferred_backend", [](at::LinalgBackend b) {
at::globalContext().setLinalgPreferredBackend(b);
});
py_module.def("_get_linalg_preferred_backend", []() {
return at::globalContext().linalgPreferredBackend();
});
py::enum_<at::BlasBackend>(py_module, "_BlasBackend")
.value("Cublas", at::BlasBackend::Cublas)
.value("Cublaslt", at::BlasBackend::Cublaslt);
py_module.def("_set_blas_preferred_backend", [](at::BlasBackend b) {
at::globalContext().setBlasPreferredBackend(b);
});
py_module.def("_get_blas_preferred_backend", []() {
return at::globalContext().blasPreferredBackend();
});
py_module.def(
"_construct_storage_from_data_pointer",
[](int64_t data_ptr, c10::Device device, size_t size_bytes) {
return c10::Storage(
c10::Storage::use_byte_size_t(),
size_bytes,
// NOLINTNEXTLINE(performance-no-int-to-ptr)
at::DataPtr(reinterpret_cast<void*>(data_ptr), device));
});
py_module.def(
"_stash_obj_in_tls", [](const std::string& key, py::handle arg) {
at::impl::ThreadLocalPythonObjects::get_state().set(
key,
std::make_shared<c10::SafePyObject>(arg.ptr(), getPyInterpreter()));
});
py_module.def("_get_obj_in_tls", [](const std::string& key) -> py::handle {
auto safe_pyobject =
at::impl::ThreadLocalPythonObjects::get_state().get(key);
auto obj = safe_pyobject->ptr(getPyInterpreter());
return py::handle(obj);
});
py_module.def("_is_key_in_tls", [](const std::string& key) -> bool {
return at::impl::ThreadLocalPythonObjects::get_state().contains(key);
});
py_module.def("_accelerator_hooks_device_count", []() {
auto device_type = at::getAccelerator();
if (device_type.has_value()) {
return at::globalContext()
.getAcceleratorHooksInterface(device_type.value())
.deviceCount();
}
return c10::DeviceIndex(-1);
});
py_module.def(
"_accelerator_hooks_set_current_device",
[](c10::DeviceIndex device_index) {
auto device_type = at::getAccelerator();
if (device_type.has_value()) {
at::globalContext()
.getAcceleratorHooksInterface(device_type.value())
.setCurrentDevice(device_index);
}
});
py_module.def("_accelerator_hooks_get_current_device", []() {
auto device_type = at::getAccelerator();
if (device_type.has_value()) {
return at::globalContext()
.getAcceleratorHooksInterface(device_type.value())
.getCurrentDevice();
}
return c10::DeviceIndex(-1);
});
py_module.def(
"_accelerator_hooks_exchange_device", [](c10::DeviceIndex device_index) {
auto device_type = at::getAccelerator();
if (device_type.has_value()) {
return at::globalContext()
.getAcceleratorHooksInterface(device_type.value())
.exchangeDevice(device_index);
}
return c10::DeviceIndex(-1);
});
py_module.def(
"_accelerator_hooks_maybe_exchange_device",
[](c10::DeviceIndex device_index) {
auto device_type = at::getAccelerator();
if (device_type.has_value()) {
return at::globalContext()
.getAcceleratorHooksInterface(device_type.value())
.maybeExchangeDevice(device_index);
}
return c10::DeviceIndex(-1);
});
py_module.def(
"_get_accelerator",
[](std::optional<bool> check = std::nullopt) {
return c10::Device(
at::getAccelerator(check.value_or(false))
.value_or(c10::DeviceType::CPU),
-1);
},
py::arg("check") = nullptr);
#ifdef USE_CUDA
PyObject* has_cuda = Py_True;
#else
PyObject* has_cuda = Py_False;
#endif
#ifdef USE_MPS
PyObject* has_mps = Py_True;
#else
PyObject* has_mps = Py_False;
#endif
#ifdef USE_XPU
PyObject* has_xpu = Py_True;
#else
PyObject* has_xpu = Py_False;
#endif
ASSERT_TRUE(set_module_attr("_has_cuda", has_cuda));
ASSERT_TRUE(
set_module_attr("_has_magma", at::hasMAGMA() ? Py_True : Py_False));
ASSERT_TRUE(set_module_attr("_has_mps", has_mps));
ASSERT_TRUE(set_module_attr("_has_xpu", has_xpu));
ASSERT_TRUE(
set_module_attr("_has_mkldnn", at::hasMKLDNN() ? Py_True : Py_False));
#ifdef _GLIBCXX_USE_CXX11_ABI
ASSERT_TRUE(set_module_attr(
"_GLIBCXX_USE_CXX11_ABI", _GLIBCXX_USE_CXX11_ABI ? Py_True : Py_False));
#else
ASSERT_TRUE(set_module_attr("_GLIBCXX_USE_CXX11_ABI", Py_False));
#endif
// See note [Pybind11 ABI constants]
#define SET_STR_DEFINE(name) \
ASSERT_TRUE(set_module_attr("_" #name, THPUtils_packString(name)))
#ifdef PYBIND11_COMPILER_TYPE
SET_STR_DEFINE(PYBIND11_COMPILER_TYPE);
#else
ASSERT_TRUE(
set_module_attr("_" C10_STRINGIZE(PYBIND11_COMPILER_TYPE), Py_None));
#endif
#ifdef PYBIND11_STDLIB
SET_STR_DEFINE(PYBIND11_STDLIB);
#else
ASSERT_TRUE(set_module_attr("_" C10_STRINGIZE(PYBIND11_STDLIB), Py_None));
#endif
#ifdef PYBIND11_BUILD_ABI
SET_STR_DEFINE(PYBIND11_BUILD_ABI);
#else
ASSERT_TRUE(set_module_attr("_" C10_STRINGIZE(PYBIND11_BUILD_ABI), Py_None));
#endif
#undef SET_STR_DEFINE
py_module.def(
"_set_conj", [](const at::Tensor& x, bool conj) { x._set_conj(conj); });
py_module.def(
"_set_neg", [](const at::Tensor& x, bool neg) { x._set_neg(neg); });
py_module.def("_get_tensor_metadata", &torch::jit::getTensorMetadata);
py_module.def(
"_set_tensor_metadata",
static_cast<void (*)(
const at::Tensor&, std::unordered_map<std::string, bool>)>(
torch::jit::setTensorMetadata));
py_module.def("_dispatch_key_set", [](const at::Tensor& x) {
return toString(x.key_set());
});
py_module.def(
"_has_storage", [](const at::Tensor& x) { return x.has_storage(); });
py_module.def("_set_meta_in_tls_dispatch_include", [](bool meta_in_tls) {
auto local_keyset = c10::impl::tls_local_dispatch_key_set();
c10::DispatchKeySet key_set({at::DispatchKey::Meta});
if (meta_in_tls) {
local_keyset.included_ = local_keyset.included_ | key_set;
} else {
local_keyset.included_ =
local_keyset.included_.remove_backend(c10::BackendComponent::MetaBit);
}
c10::impl::_force_tls_local_dispatch_key_set(local_keyset);
});
py_module.def("_meta_in_tls_dispatch_include", []() {
auto local_keyset = c10::impl::tls_local_dispatch_key_set();
return local_keyset.included_.has_backend(c10::BackendComponent::MetaBit);
});
py_module.def("_dump_local_tls_set", []() {
auto local_keyset = c10::impl::tls_local_dispatch_key_set();
std::cout << "Included: " << toString(local_keyset.included_) << "\n";
std::cout << "Excluded: " << toString(local_keyset.excluded_) << "\n";
});
py_module.def(
"_should_allow_numbers_as_tensors", [](const std::string& name) {
return torch::should_allow_numbers_as_tensors(name);
});
py_module.def(
"_group_tensors_by_device_and_dtype",
[](const std::vector<std::vector<std::optional<at::Tensor>>>&
nested_tensorlist,
const bool with_indices) {
return at::native::_group_tensors_by_first_tensors_device_and_dtype(
nested_tensorlist, with_indices);
});
py_module.def(
"_storage_address",
[](const at::Tensor& tensor) {
return reinterpret_cast<std::intptr_t>(
tensor.storage().unsafeGetStorageImpl());
},
"Gets the memory address of the Tensor's StorageImpl.");
py_module.def(
"_data_address",
[](const at::Tensor& tensor) {
return reinterpret_cast<std::intptr_t>(tensor.storage().data());
},
"Gets the memory address of the Tensor's data pointer.");
py_module.def(
"_is_cow_tensor",
[](const at::Tensor& tensor) {
return c10::impl::cow::is_cow_data_ptr(tensor.storage().data_ptr());
},
"Checks if a tensor's data pointer is COW");
py_module.def(
"_get_cudnn_batch_norm_reserve_space_size",
[](const at::Tensor& input, bool training) {
#ifdef USE_CUDA
return at::native::_get_cudnn_batch_norm_reserve_space_size(
input, training);
#else
TORCH_CHECK(false, "PyTorch was not built with cuda");
#endif
},
py::arg("input"),
py::arg("training"));
py::enum_<at::native::BatchNormBackend>(py_module, "_BatchNormBackend")
.value("Native", at::native::BatchNormBackend::Native)
.value("Cudnn", at::native::BatchNormBackend::Cudnn)
.value("Miopen", at::native::BatchNormBackend::Miopen);
py_module.def(
"_select_batch_norm_backend",
[](const at::Tensor& input,
const at::Tensor& weight,
const at::Tensor& bias,
const at::Tensor& running_mean,
const at::Tensor& running_var,
bool training,
double eps) {
return at::native::_select_batch_norm_backend(
input, weight, bias, running_mean, running_var, training, eps);
},
py::arg("input"),
py::arg("weight"),
py::arg("bias"),
py::arg("running_mean"),
py::arg("running_var"),
py::arg("training"),
py::arg("eps"));
const auto& defaultGenerator = at::detail::getDefaultCPUGenerator();
THPDefaultCPUGenerator =
(THPGenerator*)THPGenerator_initDefaultGenerator(defaultGenerator);
// This reference is meant to be given away, so no need to incref here.
ASSERT_TRUE(set_module_attr(
"default_generator",
(PyObject*)THPDefaultCPUGenerator,
/* incref= */ false));
ASSERT_TRUE(set_module_attr(
"DisableTorchFunctionSubclass",
(PyObject*)THPModule_DisableTorchFunctionSubclassType(),
/* incref= */ false));
ASSERT_TRUE(set_module_attr(
"DisableTorchFunction",
(PyObject*)THPModule_DisableTorchFunctionType(),
/* incref= */ false));
torch::set_disabled_torch_function_impl(
PyObject_GetAttrString(module, "_disabled_torch_function_impl"));
ASSERT_TRUE(torch::disabled_torch_function_impl() != nullptr);
torch::set_disabled_torch_dispatch_impl(
PyObject_GetAttrString(module, "_disabled_torch_dispatch_impl"));
ASSERT_TRUE(torch::disabled_torch_dispatch_impl() != nullptr);
return module;
END_HANDLE_TH_ERRORS
}
// Checks that the _C shared library isn't initialized multiple times. This
// can happen if the same csrc files are compiled into multiple shared
// libraries.
inline void pytorch_duplicate_guard() {
static int initialized = 0;
if (initialized) {
fmt::print(stderr, "pytorch: _C shared library re-initialized\n");
abort();
}
initialized = 1;
;
}
struct call_duplicate_guard {
call_duplicate_guard() {
pytorch_duplicate_guard();
}
};
static call_duplicate_guard _call_duplicate_guard;