Files
pytorch/test/onnx/test_pytorch_onnx_no_runtime.py
Justin Chu cd7e6d4ad1 [ONNX] New symbolic function registry (#84382)
## Summary

The change brings the new registry for symbolic functions in ONNX. The `SymbolicRegistry` class in `torch.onnx._internal.registration` replaces the dictionary and various functions defined in `torch.onnx.symbolic_registry`.

The new registry

- Has faster lookup by storing only functions in the opset version they are defined in
- Is easier to manage and interact with due to its class design
- Builds the foundation for the more flexible registration process detailed in #83787

Implementation changes

- **Breaking**: Remove `torch.onnx.symbolic_registry`
- `register_custom_op_symbolic` and `unregister_custom_op_symbolic` in utils maintain their api for compatibility
- Update _onnx_supported_ops.py for doc generation to include quantized ops.
- Update code to register python ops in `torch/csrc/jit/passes/onnx.cpp`

## Profiling results

-0.1 seconds in execution time. -34% time spent in `_run_symbolic_function`. Tested on the alexnet example in public doc.

### After
```
   └─ 1.641 export  <@beartype(torch.onnx.utils.export) at 0x7f19be17f790>:1
      └─ 1.641 export  torch/onnx/utils.py:185
         └─ 1.640 _export  torch/onnx/utils.py:1331
            ├─ 0.889 _model_to_graph  torch/onnx/utils.py:1005
            │  ├─ 0.478 _optimize_graph  torch/onnx/utils.py:535
            │  │  ├─ 0.214 PyCapsule._jit_pass_onnx_graph_shape_type_inference  <built-in>:0
            │  │  │     [2 frames hidden]  <built-in>
            │  │  ├─ 0.190 _run_symbolic_function  torch/onnx/utils.py:1670
            │  │  │  └─ 0.145 Constant  torch/onnx/symbolic_opset9.py:5782
            │  │  │     └─ 0.139 _graph_op  torch/onnx/_patch_torch.py:18
            │  │  │        └─ 0.134 PyCapsule._jit_pass_onnx_node_shape_type_inference  <built-in>:0
            │  │  │              [2 frames hidden]  <built-in>
            │  │  └─ 0.033 [self]
```

### Before
![image](https://user-images.githubusercontent.com/11205048/188032302-688d881e-860d-4046-bdba-90da54233576.png)

### Start up time

The startup process takes 0.03 seconds. Calls to `inspect` will be eliminated when we switch to using decorators for registration in #84448

![image](https://user-images.githubusercontent.com/11205048/188208910-250f0434-475d-4872-9abc-781535519305.png)

Pull Request resolved: https://github.com/pytorch/pytorch/pull/84382
Approved by: https://github.com/AllenTiTaiWang, https://github.com/BowenBao
2022-09-16 21:45:16 +00:00

781 lines
27 KiB
Python

# Owner(s): ["module: onnx"]
"""Tests for onnx export that don't run the exported model."""
import contextlib
import io
import itertools
import unittest
import unittest.mock
from typing import Callable, Dict, Iterable, List, Optional, Tuple, Union
import onnx
import onnx.numpy_helper
import torch
import torch.nn.functional as F
from torch import Tensor
from torch.onnx import symbolic_helper, utils
from torch.onnx._globals import GLOBALS
from torch.onnx._internal import registration
from torch.testing._internal import common_utils
def export_to_onnx(
model: Union[torch.nn.Module, torch.jit.ScriptFunction],
input: Union[torch.Tensor, Tuple[torch.Tensor]],
custom_ops: Optional[
Iterable[
Union[contextlib.AbstractContextManager, contextlib.ContextDecorator],
]
] = None,
mocks: Optional[Iterable] = None,
operator_export_type: torch.onnx.OperatorExportTypes = torch.onnx.OperatorExportTypes.ONNX,
opset_version: int = GLOBALS.export_onnx_opset_version,
) -> onnx.ModelProto:
"""Exports `model(input)` to ONNX and returns it.
Custom operators and/or unittest patches can be used help reproducing specific behaviors.
Args:
model: model to export
input: model input with same format as `torch.onnx.export(..,args,...)`
custom_ops: list of custom operators to use during export
mocks: list of mocks to use during export
operator_export_type: export type as described by `torch.onnx.export(...operator_export_type,...)`
opset_version: ONNX opset version as described by `torch.onnx.export(...opset_version,...)`
Returns:
A valid ONNX model (`onnx.ModelProto`)
"""
custom_ops = custom_ops or []
mocks = mocks or []
with contextlib.ExitStack() as stack:
for ctx in itertools.chain(custom_ops, mocks):
stack.enter_context(ctx)
f = io.BytesIO()
torch.onnx.export(
model,
input,
f,
operator_export_type=operator_export_type,
opset_version=opset_version,
)
# Validate ONNX graph before returning it
onnx_model = onnx.load_from_string(f.getvalue())
onnx.checker.check_model(onnx_model)
return onnx_model
class TestONNXExport(common_utils.TestCase):
def test_fuse_addmm(self):
class AddmmModel(torch.nn.Module):
def forward(self, x):
return torch.mm(x, x) + x
x = torch.ones(3, 3)
f = io.BytesIO()
torch.onnx._export(AddmmModel(), x, f, verbose=False)
def test_onnx_transpose_incomplete_tensor_type(self):
# Smoke test to get us into the state where we are attempting to export
# a transpose op, where the input is a TensorType without size information.
# This would previously not work, since we would
# take the size of the input and use the length of its sizes as the
# number of dimensions in the permutation.
class Foo(torch.jit.ScriptModule):
@torch.jit.script_method
def forward(self, x):
return x.contiguous().transpose(0, 1).sum()
class TraceMe(torch.nn.Module):
def __init__(self):
super(TraceMe, self).__init__()
self.foo = Foo()
def forward(self, x):
return self.foo(x)
tm = TraceMe()
tm = torch.jit.trace(tm, torch.rand(3, 4))
f = io.BytesIO()
torch.onnx.export(tm, (torch.rand(3, 4),), f)
def test_export_tensoroption_to(self):
def foo(x):
return x[0].clone().detach().cpu() + x
traced = torch.jit.trace(foo, (torch.rand([2])))
torch.onnx.export_to_pretty_string(traced, (torch.rand([2]),))
def test_onnx_export_script_module(self):
class ModuleToExport(torch.jit.ScriptModule):
def __init__(self):
super(ModuleToExport, self).__init__()
@torch.jit.script_method
def forward(self, x):
y = x - x
return x + x
mte = ModuleToExport()
torch.onnx.export_to_pretty_string(mte, (torch.zeros(1, 2, 3),), verbose=False)
@common_utils.suppress_warnings
def test_onnx_export_func_with_warnings(self):
@torch.jit.script
def func_with_warning(inp):
return torch.nn.functional.sigmoid(inp) # triggers a deprecation warning
class WarningTest(torch.nn.Module):
def __init__(self):
super(WarningTest, self).__init__()
def forward(self, x):
return func_with_warning(x)
# no exception
torch.onnx.export_to_pretty_string(
WarningTest(), torch.randn(42), verbose=False
)
def test_onnx_export_script_python_fail(self):
class PythonModule(torch.jit.ScriptModule):
def __init__(self):
super(PythonModule, self).__init__()
@torch.jit.ignore
def forward(self, x):
return torch.neg(x)
class ModuleToExport(torch.jit.ScriptModule):
def __init__(self):
super(ModuleToExport, self).__init__()
self.mod = PythonModule()
@torch.jit.script_method
def forward(self, x):
y = self.mod(x)
return y + y
mte = ModuleToExport()
f = io.BytesIO()
with self.assertRaisesRegex(RuntimeError, "Couldn't export Python"):
torch.onnx._export(mte, (torch.zeros(1, 2, 3),), f, verbose=False)
def test_onnx_export_script_inline_trace(self):
class ModuleToInline(torch.nn.Module):
def __init__(self):
super(ModuleToInline, self).__init__()
def forward(self, x):
return torch.neg(x)
class ModuleToExport(torch.jit.ScriptModule):
def __init__(self):
super(ModuleToExport, self).__init__()
self.mod = torch.jit.trace(ModuleToInline(), torch.zeros(1, 2, 3))
@torch.jit.script_method
def forward(self, x):
y = self.mod(x)
return y + y
mte = ModuleToExport()
torch.onnx.export_to_pretty_string(mte, (torch.zeros(1, 2, 3),), verbose=False)
def test_onnx_export_script_inline_script(self):
class ModuleToInline(torch.jit.ScriptModule):
def __init__(self):
super(ModuleToInline, self).__init__()
@torch.jit.script_method
def forward(self, x):
return torch.neg(x)
class ModuleToExport(torch.jit.ScriptModule):
def __init__(self):
super(ModuleToExport, self).__init__()
self.mod = ModuleToInline()
@torch.jit.script_method
def forward(self, x):
y = self.mod(x)
return y + y
mte = ModuleToExport()
torch.onnx.export_to_pretty_string(mte, (torch.zeros(1, 2, 3),), verbose=False)
def test_onnx_export_script_module_loop(self):
class ModuleToExport(torch.jit.ScriptModule):
def __init__(self):
super(ModuleToExport, self).__init__()
@torch.jit.script_method
def forward(self, x):
# test if we support end to end onnx export on loop and
# nested loops with and without loop index
for _ in range(5):
for i in range(3):
x = x + i
return x
mte = ModuleToExport()
torch.onnx.export_to_pretty_string(mte, (torch.zeros(1, 2, 3),), verbose=False)
@common_utils.suppress_warnings
def test_onnx_export_script_truediv(self):
class ModuleToExport(torch.jit.ScriptModule):
def __init__(self):
super(ModuleToExport, self).__init__()
@torch.jit.script_method
def forward(self, x):
z = x.size(0) / 2
return x + z
mte = ModuleToExport()
torch.onnx.export_to_pretty_string(
mte, (torch.zeros(1, 2, 3, dtype=torch.float),), verbose=False
)
def test_onnx_export_script_non_alpha_add_sub(self):
class ModuleToExport(torch.jit.ScriptModule):
def __init__(self):
super(ModuleToExport, self).__init__()
@torch.jit.script_method
def forward(self, x):
bs = x.size(0) + 1
return bs - 1
mte = ModuleToExport()
torch.onnx.export_to_pretty_string(mte, (torch.rand(3, 4),), verbose=False)
def test_onnx_export_script_module_if(self):
class ModuleToExport(torch.jit.ScriptModule):
def __init__(self):
super(ModuleToExport, self).__init__()
@torch.jit.script_method
def forward(self, x):
if bool(torch.sum(x) > 0):
x = torch.neg(x)
return x
mte = ModuleToExport()
torch.onnx.export_to_pretty_string(mte, (torch.zeros(1, 2, 3),), verbose=False)
def test_onnx_export_script_inline_params(self):
class ModuleToInline(torch.jit.ScriptModule):
def __init__(self):
super(ModuleToInline, self).__init__()
self.m = torch.nn.Parameter(torch.ones(3, 3))
self.unused = torch.nn.Parameter(torch.ones(1, 2, 3))
@torch.jit.script_method
def forward(self, x):
return torch.mm(x, self.m)
class ModuleToExport(torch.jit.ScriptModule):
def __init__(self):
super(ModuleToExport, self).__init__()
self.mod = ModuleToInline()
self.param = torch.nn.Parameter(torch.ones(3, 4))
@torch.jit.script_method
def forward(self, x):
y = self.mod(x)
return torch.mm(y, self.param)
mte = ModuleToExport()
result = mte(torch.zeros(2, 3))
reference = torch.mm(
torch.mm(torch.zeros(2, 3), torch.ones(3, 3)), torch.ones(3, 4)
)
self.assertEqual(result, reference)
torch.onnx.export_to_pretty_string(mte, (torch.ones(2, 3),), verbose=False)
def test_onnx_export_speculate(self):
class Foo(torch.jit.ScriptModule):
def __init__(self, m):
super(Foo, self).__init__()
self.m = m
@torch.jit.script_method
def forward(self, x):
x += x
# because we are testing if we emit `if` statement correctly
# we cannot use `True` as the condition. Constant prop
# would remove the `if` statements.
c = torch.sum(x) > 4
if bool(c):
if bool(c):
y = self.m(x)
else:
y = self.m(x)
else:
y = self.m(x)
return y
linear = torch.jit.trace(
torch.nn.Linear(10, 20).float(), torch.zeros(1, 10, dtype=torch.float)
)
@torch.jit.script
def transpose(x):
return x.t()
f1 = Foo(transpose)
f2 = Foo(linear)
torch.onnx.export_to_pretty_string(f1, (torch.ones(1, 10, dtype=torch.float),))
torch.onnx.export_to_pretty_string(f2, (torch.ones(1, 10, dtype=torch.float),))
def test_onnx_export_shape_reshape(self):
class Foo(torch.nn.Module):
def forward(self, x):
import torch.onnx.operators
x = x.repeat(5, 1, 1)
shape = torch.onnx.operators.shape_as_tensor(x)
reshaped = torch.onnx.operators.reshape_from_tensor_shape(x, shape)
return reshaped
foo = torch.jit.trace(Foo(), torch.zeros(1, 2, 3))
torch.onnx.export_to_pretty_string(foo, (torch.zeros(1, 2, 3)))
def test_listconstruct_erasure(self):
class FooMod(torch.nn.Module):
def forward(self, x):
mask = x < 0.0
return x[mask]
torch.onnx.export_to_pretty_string(
FooMod(),
(torch.rand(3, 4),),
add_node_names=False,
do_constant_folding=False,
operator_export_type=torch.onnx.OperatorExportTypes.ONNX_ATEN_FALLBACK,
)
def test_export_dynamic_slice(self):
class DynamicSliceExportMod(torch.jit.ScriptModule):
@torch.jit.script_method
def forward(self, x):
retval = x[0]
for i in range(x.size(1)):
retval += torch.sum(x[0:i], dim=0)
return retval
mod = DynamicSliceExportMod()
input = torch.rand(3, 4, 5)
torch.onnx.export_to_pretty_string(
DynamicSliceExportMod(), (input,), opset_version=10
)
def test_export_dict(self):
class DictModule(torch.nn.Module):
def forward(self, x_in: torch.Tensor) -> Dict[str, torch.Tensor]:
return {"test_key_out": x_in}
x_in = torch.tensor(1)
mod = DictModule()
mod.train(False)
torch.onnx.export_to_pretty_string(mod, (x_in,))
with self.assertRaisesRegex(RuntimeError, r"DictConstruct.+is not supported."):
torch.onnx.export_to_pretty_string(torch.jit.script(mod), (x_in,))
def test_source_range_propagation(self):
class ExpandingModule(torch.nn.Module):
def __init__(self):
super().__init__()
# Will be expanded during ONNX export
self.ln = torch.nn.LayerNorm([1])
def forward(self, input):
return self.ln(input)
mod = ExpandingModule()
graph, _, _ = utils._model_to_graph(
mod,
(torch.zeros(1),),
operator_export_type=torch.onnx.OperatorExportTypes.ONNX,
)
# Ensure that every node in the graph has a valid source range
for node in graph.nodes():
self.assertTrue(node.sourceRange())
@common_utils.skipIfCaffe2
def test_clip_aten_fallback_due_exception(self):
def bad_clamp(g, self, min, max):
return symbolic_helper._onnx_unsupported("Bad boy!")
class MyClip(torch.nn.Module):
def forward(self, x):
return torch.clamp(x, min=-0.5, max=0.5)
onnx_model = export_to_onnx(
MyClip(),
torch.randn(3, 4, requires_grad=True),
custom_ops=[common_utils.custom_op("aten::clamp", bad_clamp, 9)],
operator_export_type=torch.onnx.OperatorExportTypes.ONNX_ATEN_FALLBACK,
)
self.assertAtenOp(onnx_model, "clamp", "Tensor")
@common_utils.skipIfCaffe2
def test_clip_aten_fallback_explicit_request(self):
class MyClip(torch.nn.Module):
def forward(self, x):
return torch.clamp(x, min=-0.5, max=0.5)
def break_is_registered_op_api(name):
fake_missing_symbolics = {"aten::clamp"}
if name in fake_missing_symbolics:
return None
return registration.registry.get_function_group(name)
# Force missing symbolic for well-known op using a mock
onnx_model = export_to_onnx(
MyClip(),
torch.randn(3, 4, requires_grad=True),
mocks=[
unittest.mock.patch(
"torch.onnx._internal.registration.registry.get_function_group",
side_effect=break_is_registered_op_api,
)
],
operator_export_type=torch.onnx.OperatorExportTypes.ONNX_ATEN_FALLBACK,
)
self.assertAtenOp(onnx_model, "clamp", "Tensor")
def _helper_test_to_(self, cast_fn: Callable[[torch.Tensor], torch.Tensor]):
"""Helper to test aten::to(device) variants.
`cast_fn` is converted into a `torch.jit.script`. It wraps `aten::to`
during export to preventing the devices to be hard-coded.
Needed by detectron2 after https://github.com/facebookresearch/detectron2/pull/4132/
"""
cast_fn = torch.jit.script(cast_fn)
onnx_model = export_to_onnx(cast_fn, torch.zeros([1, 3, 32, 32]))
for n in onnx_model.graph.node:
self.assertNotEqual(n.op_type, "To")
self.assertNotEqual(n.op_type, "Cast")
def test_to__cpu_string(self):
def cast_cpu_string(src: torch.Tensor) -> torch.Tensor:
return src.to("cpu")
self._helper_test_to_(cast_cpu_string)
def test_to__device_cpu_string(self):
def cast_device_cpu_string(src: torch.Tensor) -> torch.Tensor:
return src.to(device="cpu")
self._helper_test_to_(cast_device_cpu_string)
def test_script_custom_class_error(self):
class BoxCoder:
def __init__(self, bbox_xform_clip: float) -> None:
self.bbox_xform_clip = bbox_xform_clip
def decode(self, rel_codes: Tensor, boxes: List[Tensor]) -> Tensor:
boxes = torch.cat(boxes, dim=0)
pred_ctr_x = (
torch.clamp(rel_codes[:, 0::4], max=self.bbox_xform_clip)
* boxes[:, 2]
)
return pred_ctr_x
class MyModule(torch.nn.Module):
__annotations__ = {
"box_coder": BoxCoder,
}
def __init__(self):
super().__init__()
self.box_coder = BoxCoder(1.4)
def forward(self, box_regression: Tensor, proposals: List[Tensor]):
return self.box_coder.decode(box_regression, proposals)
model = torch.jit.script(MyModule())
box_regression = torch.randn([4, 4])
proposal = [torch.randn(2, 4), torch.randn(2, 4)]
with self.assertRaises(RuntimeError) as cm:
onnx_model = io.BytesIO()
torch.onnx.export(
model,
(box_regression, proposal),
onnx_model,
)
def test_initializer_sequence(self):
class MyModule(torch.nn.Module):
def __init__(self, input_size, hidden_size, num_classes):
super().__init__()
self.fc1 = torch.nn.Linear(input_size, hidden_size)
self.relu = torch.nn.ReLU()
self.fc2 = torch.nn.Linear(hidden_size, num_classes)
def forward(self, x):
out = self.fc1(x)
out = self.relu(out)
out = self.fc2(out)
return out
test_model = MyModule(3, 4, 10)
state_dict_list = [k for (k, v) in test_model.state_dict().items()]
named_params_list = [k for (k, v) in test_model.named_parameters()]
x = torch.randn(32, 3)
f = io.BytesIO()
torch.onnx._export(test_model, (x,), f, do_constant_folding=False)
loaded_model = onnx.load_from_string(f.getvalue())
actual_list = [p.name for p in loaded_model.graph.initializer]
assert actual_list == state_dict_list, (
"Initializers' sequence is not as same as state_dict(). Expected: ("
+ ", ".join(state_dict_list)
+ "). Actual:("
+ ", ".join(actual_list)
+ ")."
)
assert actual_list == named_params_list, (
"Initializers' sequence is not as same as named_parameters(). Expected: ("
+ ", ".join(named_params_list)
+ "). Actual:("
+ ", ".join(actual_list)
+ ")."
)
def test_initializer_sequence_script_model(self):
def list_is_expected(short_list, long_list) -> bool:
if len(short_list) > len(long_list):
return False
for i in range(len(short_list)):
if short_list[i] not in long_list[i]:
return False
return True
def loop(x, y):
for i in range(int(y)):
x = x + i
return x
class MyModule(torch.nn.Module):
def __init__(self, input_size, hidden_size, num_classes):
super().__init__()
self.fc1 = torch.nn.Linear(input_size, hidden_size)
self.relu = torch.nn.ReLU()
self.fc2 = torch.nn.Linear(hidden_size, num_classes)
def forward(self, x, y):
x = loop(x, y)
out = self.fc1(x)
out = self.relu(out)
out = self.fc2(out)
return out
test_model = torch.jit.script(MyModule(3, 4, 10))
state_dict_list = [k for (k, v) in test_model.state_dict().items()]
named_params_list = [k for (k, v) in test_model.named_parameters()]
x = torch.ones(2, 3, dtype=torch.float)
y = torch.tensor(5, dtype=torch.long)
f = io.BytesIO()
torch.onnx.export(test_model, (x, y), f, do_constant_folding=False)
loaded_model = onnx.load_from_string(f.getvalue())
actual_list = [p.name for p in loaded_model.graph.initializer]
assert list_is_expected(state_dict_list, actual_list), (
"ScriptModel - Initializers' sequence is not as same as state_dict(). Expected: ("
+ ", ".join(state_dict_list)
+ "). Actual:("
+ ", ".join(actual_list)
+ ")."
)
assert list_is_expected(named_params_list, actual_list), (
"ScriptModel - Initializers' sequence is not as same as named_parameters(). Expected: ("
+ ", ".join(named_params_list)
+ "). Actual:("
+ ", ".join(actual_list)
+ ")."
)
def test_onnx_checker_invalid_graph(self):
class CustomAddModule(torch.nn.Module):
def forward(self, x, y):
return torch.add(x, y)
def symbolic_custom_invalid_add(g, input, other, alpha=None):
return g.op("Add", input, other, invalid_attr_i=1)
torch.onnx.register_custom_op_symbolic("::add", symbolic_custom_invalid_add, 1)
x = torch.randn(2, 3, 4)
y = torch.randn(2, 3, 4)
test_model = CustomAddModule()
f = io.BytesIO()
try:
with self.assertRaises(torch.onnx.errors.CheckerError):
torch.onnx.export(test_model, (x, y), f)
finally:
torch.onnx.unregister_custom_op_symbolic("::add", 1)
self.assertTrue(f.getvalue(), "ONNX graph was not exported.")
loaded_model = onnx.load_from_string(f.getvalue())
def test_shape_value_map(self):
class RSoftMax(torch.nn.Module):
def __init__(self, radix, cardinality):
super().__init__()
self.radix = radix
self.cardinality = cardinality
def forward(self, x):
batch = x.size(0)
x = x.view(batch, self.cardinality, self.radix, -1).transpose(1, 2)
x = F.softmax(x, dim=1)
x = x.reshape(batch, -1)
return x
radix = 2
cardinality = 1
x = torch.randn(10, 1, 128, 1)
f = io.BytesIO()
torch.onnx.export(
RSoftMax(radix, cardinality),
(x,),
f,
input_names=["x"],
dynamic_axes={"x": [0]},
)
loaded_model = onnx.load_from_string(f.getvalue())
self.assertEqual(
loaded_model.graph.output[0].type.tensor_type.shape.dim[1].dim_value, 128
)
def test_onnx_proto_checker(self):
class Model(torch.nn.Module):
def __init__(self):
super().__init__()
def forward(self, x):
return 2 * x
x = torch.randn(1, 2, 3, requires_grad=True)
f = io.BytesIO()
torch.onnx.export(Model(), x, f)
model = onnx.load(f)
model.ir_version = 0
def check_proto():
torch._C._check_onnx_proto(model.SerializeToString())
self.assertRaises(RuntimeError, check_proto)
def test_maintain_dynamic_shapes_of_unreliable_nodes(self):
def symbolic_pythonop(ctx: torch.onnx.SymbolicContext, g, *args, **kwargs):
return g.op("com.microsoft::PythonOp")
torch.onnx.register_custom_op_symbolic("prim::PythonOp", symbolic_pythonop, 1)
self.addCleanup(torch.onnx.unregister_custom_op_symbolic, "prim::PythonOp", 1)
# necessay parameters for transformer embeddings
hidden_size = 48
max_position_embeddings = 32
batch_size = 2
# issue found that autograd.function making downstream
# node unreliable but with static shape. The issue was first
# discovered with using Apex FusedLayerNorm in Transformers
class CustomLayerNorm(torch.autograd.Function):
@staticmethod
def forward(ctx, embedding):
layer_norm = torch.nn.LayerNorm(hidden_size, eps=1e-12)
return layer_norm(embedding)
class EmbeddingModule(torch.nn.Module):
def forward(
self,
embeddings=None,
):
embedding_output = CustomLayerNorm.apply(embeddings)
query = embedding_output.transpose(0, 1)
target_len, batch_size, embedding_dim = query.size()
# Reshape is used for consuming batch_size, and if it is static,
# this will be a Constant node in the graph
query = query.reshape(target_len, batch_size, embedding_dim)
return query
embeddings = torch.randn(batch_size, max_position_embeddings, hidden_size)
f = io.BytesIO()
torch.onnx.export(
EmbeddingModule().eval(),
(embeddings,),
f,
input_names=["embeddings"],
dynamic_axes={
"embeddings": {
0: "batch_size",
1: "max_position_embeddings",
2: "hidden_size",
}
},
custom_opsets={"com.microsoft": 1},
)
model = onnx.load(io.BytesIO(f.getvalue()))
# If there is a constant node with dim=3 and max_position_embeddings,
# batch_size, hidden_size as shape, it means the shape becomes static.
# Normally, with dynamic batch size, this constant node should not exist.
const_node = [n for n in model.graph.node if n.op_type == "Constant"]
self.assertNotEqual(len(const_node), 0)
for node in const_node:
for a in node.attribute:
if a.name == "value":
shape = onnx.numpy_helper.to_array(a.t)
self.assertNotEqual(
shape.tolist(),
[max_position_embeddings, batch_size, hidden_size],
)
def test_is_fp_for_C_TypeList(self):
class M(torch.nn.Module):
def forward(self, x):
x = x.squeeze(1)
w = x.shape[2]
pos = x.view(2, -1).argmax(1)
x_int = pos % w
y_int = (pos - x_int) // w
return y_int, x_int
model = torch.jit.script(M())
inputs = torch.randn(2, 4, 6)
f = io.BytesIO()
torch.onnx.export(
model, inputs, f, dynamic_axes={"x": [0, 1]}, input_names=["x"]
)
if __name__ == "__main__":
common_utils.run_tests()