mirror of
https://github.com/pytorch/pytorch.git
synced 2025-10-22 14:15:01 +08:00
This diff/PR includes the changes to support native Inductor integration for MTIA. The goal is to support `torch.compile(backend="inductor")` for MTIA. Inductor should generate code(triton kernel + python wrapper code) similar to CUDA. And the triton kernels can be launched eagerly. The changes include: - Add MTIA device interfaces used by Dynamo and Inductor, including APIs on device, stream, event, etc. - Add required torch.mtia APIs, like is_bf16_supported, memory_allocated, set_stream_by_id, etc. - MTIA specific codegen logic, for example, loading MTIA dynamic_library. - Other necessary changes to integrate with Inductor codegn, following other devices like CUDA, XPU. - Integrate with the [empty_strided_mtia](https://www.internalfb.com/code/fbsource/[0d017d3a4a1bdff7253f9c66a9f38e77bd62166b]/fbcode/caffe2/aten/src/ATen/native/mtia/EmptyTensor.cpp?lines=49%2C63%2C71%2C74%2C78) API that we’ve added for the new MTIA ATen backend. - A change in Inductor runtime to avoid re-initialize MTIADriver. - BUCK changes to include ATen-mtia in Inductor, and to use -USE_MTIA preprocessor flag. - Update `test_mnist_e2e.py` to cover native Inductor as backend, using the `--use_native_inductor` flag. - Add a personal script(`scripts/anwang/run_native_inductor_script.py`) for testing purpose. Note: - This approach(option 3) aims to provide a pytorch native approach of Inductor integration for MTIA, minimizing the onboarding overhead. The downside of this approach is that it doesn't leverage MTIA specific graph optimization, and is limited to eagerly launch overhead. - MTIA will support another approach(option 2) to provide best performance, based on WrapperFxCodegen. We should be able to reuse the fundamental changes of this diff for option 2, like the device interfaces, steam/event APIs, etc, especially as WrapperFxCodegen inherits PythonWrapperCodegen. Internal: References: - [post for context](https://fb.workplace.com/groups/mtiasw/permalink/1718377262384606/) - [Inductor integration discussion(option 1/2/3)](https://docs.google.com/document/d/1p6363OXtVIRv1hPoaKlRSK3j-iir3QIbDd5bjyqCNig/edit?tab=t.0#heading=h.7s4ns6wcnhmb) - [Project design doc(option 3)](https://docs.google.com/document/d/1jXUmhgoV9WvkMf-bcY3Od_kK9K_RDOdgHdt1LoQ5Tc4/edit?tab=t.0#heading=h.y43gwdqlv46w) - [early prototying diff](https://www.internalfb.com/diff/D75110196) - [MPS integration PR](https://github.com/pytorch/pytorch/pull/153959) - [empty_strided_xpu PR](https://github.com/pytorch/pytorch/pull/126678) Differential Revision: [D78458745](https://our.internmc.facebook.com/intern/diff/D78458745/) Pull Request resolved: https://github.com/pytorch/pytorch/pull/158526 Approved by: https://github.com/blaine-rister, https://github.com/jansel, https://github.com/eellison
601 lines
21 KiB
Python
601 lines
21 KiB
Python
"""
|
|
Device abstraction layer for TorchDynamo and Inductor backends.
|
|
|
|
This module provides a unified interface for different hardware backends (CUDA, XPU,
|
|
CPU, MPS, MTIA) through a common device interface. Key components include:
|
|
|
|
- DeviceInterface: Base class defining the common API for all device types
|
|
- Device-specific implementations: CudaInterface, XpuInterface, CpuInterface, MpsInterface, MtiaInterface
|
|
- Device registration system for managing available backends
|
|
- Worker APIs for multi-processing scenarios
|
|
- Stream and event management across different devices
|
|
- Device property caching for worker processes
|
|
|
|
The abstraction layer enables device-agnostic code in TorchDynamo while allowing
|
|
specialized implementations for each hardware backend's unique features.
|
|
"""
|
|
|
|
import inspect
|
|
import time
|
|
from collections.abc import Iterable
|
|
from dataclasses import dataclass
|
|
from typing import Any, Callable, Literal, Optional, Union
|
|
|
|
import torch
|
|
|
|
|
|
get_cuda_stream: Optional[Callable[[int], int]]
|
|
if torch.cuda._is_compiled():
|
|
from torch._C import _cuda_getCurrentRawStream as get_cuda_stream
|
|
else:
|
|
get_cuda_stream = None
|
|
|
|
# Recording the device properties in the main process but used in worker process.
|
|
caching_worker_device_properties: dict[str, Any] = {}
|
|
caching_worker_current_devices: dict[str, int] = {}
|
|
|
|
|
|
class DeviceInterface:
|
|
"""
|
|
This is a simple device runtime interface for Inductor. It enables custom
|
|
backends to be integrated with Inductor in a device-agnostic semantic.
|
|
"""
|
|
|
|
class device:
|
|
def __new__(cls, device: torch.types.Device) -> Any:
|
|
raise NotImplementedError
|
|
|
|
class Event:
|
|
def __new__(cls, *args: Any, **kwargs: Any) -> Any:
|
|
raise NotImplementedError(
|
|
"Event should be inherited from torch.Event, otherwise, it couldn't be captured by dynamo."
|
|
)
|
|
|
|
class Stream:
|
|
def __new__(cls, *args: Any, **kwargs: Any) -> Any:
|
|
raise NotImplementedError(
|
|
"Stream should be inherited from torch.Stream, otherwise, it couldn't be captured by dynamo."
|
|
)
|
|
|
|
class Worker:
|
|
"""
|
|
Worker API to query device properties that will work in multi processing
|
|
workers that cannot use the GPU APIs (due to processing fork() and
|
|
initialization time issues). Properties are recorded in the main process
|
|
before we fork the workers.
|
|
"""
|
|
|
|
@staticmethod
|
|
def set_device(device: int) -> None:
|
|
raise NotImplementedError
|
|
|
|
@staticmethod
|
|
def current_device() -> int:
|
|
raise NotImplementedError
|
|
|
|
@staticmethod
|
|
def get_device_properties(device: torch.types.Device = None) -> Any:
|
|
raise NotImplementedError
|
|
|
|
@staticmethod
|
|
def current_device() -> int:
|
|
raise NotImplementedError
|
|
|
|
@staticmethod
|
|
def set_device(device: torch.types.Device) -> None:
|
|
raise NotImplementedError
|
|
|
|
@staticmethod
|
|
def maybe_exchange_device(device: int) -> int:
|
|
raise NotImplementedError
|
|
|
|
@staticmethod
|
|
def exchange_device(device: int) -> int:
|
|
raise NotImplementedError
|
|
|
|
@staticmethod
|
|
def device_count() -> int:
|
|
raise NotImplementedError
|
|
|
|
@staticmethod
|
|
def is_available() -> bool:
|
|
raise NotImplementedError
|
|
|
|
@staticmethod
|
|
def stream(stream: torch.Stream) -> Any:
|
|
raise NotImplementedError
|
|
|
|
@staticmethod
|
|
def current_stream() -> torch.Stream:
|
|
raise NotImplementedError
|
|
|
|
@staticmethod
|
|
def set_stream(stream: torch.Stream) -> None:
|
|
raise NotImplementedError
|
|
|
|
@staticmethod
|
|
def _set_stream_by_id(stream_id: int, device_index: int, device_type: int) -> None:
|
|
raise NotImplementedError
|
|
|
|
@staticmethod
|
|
def get_raw_stream(device_idx: int) -> int:
|
|
raise NotImplementedError
|
|
|
|
@staticmethod
|
|
def synchronize(device: torch.types.Device = None) -> None:
|
|
raise NotImplementedError
|
|
|
|
@classmethod
|
|
def get_device_properties(cls, device: torch.types.Device = None) -> Any:
|
|
return cls.Worker.get_device_properties(device)
|
|
|
|
@staticmethod
|
|
def get_compute_capability(device: torch.types.Device = None) -> Any:
|
|
raise NotImplementedError
|
|
|
|
@staticmethod
|
|
def is_bf16_supported(including_emulation: bool = False) -> bool:
|
|
raise NotImplementedError
|
|
|
|
@classmethod
|
|
def is_dtype_supported(
|
|
cls, dtype: torch.dtype, including_emulation: bool = False
|
|
) -> bool:
|
|
return dtype != torch.bfloat16 or cls.is_bf16_supported(including_emulation)
|
|
|
|
@staticmethod
|
|
def memory_allocated(device: torch.types.Device = None) -> int:
|
|
raise NotImplementedError
|
|
|
|
@staticmethod
|
|
def is_triton_capable(device: torch.types.Device = None) -> bool:
|
|
"""
|
|
Returns True if the device has Triton support, False otherwise, even if
|
|
the appropriate Triton backend is not available.
|
|
"""
|
|
return False
|
|
|
|
@classmethod
|
|
def raise_if_triton_unavailable(cls, device: torch.types.Device = None) -> None:
|
|
"""
|
|
Raises a `RuntimeError` with the appropriate human-readable instructions
|
|
to resolve the issue if Triton is not available for the given device, or
|
|
the default device if `device` is `None`.
|
|
|
|
The caller should ensure the presence of the 'triton' package before
|
|
calling this method.
|
|
"""
|
|
if not cls.is_triton_capable():
|
|
raise RuntimeError("This device is not capable of supporting Triton")
|
|
|
|
|
|
class DeviceGuard:
|
|
"""
|
|
This class provides a context manager for device switching. This is a stripped
|
|
down version of torch.{device_name}.device.
|
|
|
|
The context manager changes the current device to the given device index
|
|
on entering the context and restores the original device on exiting.
|
|
The device is switched using the provided device interface.
|
|
"""
|
|
|
|
def __init__(
|
|
self, device_interface: type[DeviceInterface], index: Optional[int]
|
|
) -> None:
|
|
self.device_interface = device_interface
|
|
self.idx = index
|
|
self.prev_idx = -1
|
|
|
|
def __enter__(self) -> None:
|
|
if self.idx is not None:
|
|
self.prev_idx = self.device_interface.exchange_device(self.idx)
|
|
|
|
def __exit__(self, type: Any, value: Any, traceback: Any) -> Literal[False]:
|
|
if self.idx is not None:
|
|
self.idx = self.device_interface.maybe_exchange_device(self.prev_idx)
|
|
return False
|
|
|
|
|
|
class CudaInterface(DeviceInterface):
|
|
device = torch.cuda.device # type: ignore[assignment]
|
|
|
|
# register Event and Stream class into the backend interface
|
|
# make sure Event and Stream are implemented and inherited from the torch.Event and torch.Stream
|
|
Event = torch.cuda.Event # type: ignore[assignment]
|
|
Stream = torch.cuda.Stream # type: ignore[assignment]
|
|
|
|
class Worker:
|
|
@staticmethod
|
|
def set_device(device: int) -> None:
|
|
caching_worker_current_devices["cuda"] = device
|
|
|
|
@staticmethod
|
|
def current_device() -> int:
|
|
if "cuda" in caching_worker_current_devices:
|
|
return caching_worker_current_devices["cuda"]
|
|
return torch.cuda.current_device()
|
|
|
|
@staticmethod
|
|
def get_device_properties(device: torch.types.Device = None) -> Any:
|
|
if device is not None:
|
|
if isinstance(device, str):
|
|
device = torch.device(device)
|
|
assert device.type == "cuda"
|
|
if isinstance(device, torch.device):
|
|
device = device.index
|
|
if device is None:
|
|
device = CudaInterface.Worker.current_device()
|
|
|
|
if "cuda" not in caching_worker_device_properties:
|
|
device_prop = [
|
|
torch.cuda.get_device_properties(i)
|
|
for i in range(torch.cuda.device_count())
|
|
]
|
|
caching_worker_device_properties["cuda"] = device_prop
|
|
|
|
return caching_worker_device_properties["cuda"][device]
|
|
|
|
current_device = staticmethod(torch.cuda.current_device)
|
|
set_device = staticmethod(torch.cuda.set_device)
|
|
device_count = staticmethod(torch.cuda.device_count)
|
|
stream = staticmethod(torch.cuda.stream) # type: ignore[assignment]
|
|
current_stream = staticmethod(torch.cuda.current_stream)
|
|
set_stream = staticmethod(torch.cuda.set_stream) # type: ignore[assignment]
|
|
_set_stream_by_id = staticmethod(torch.cuda._set_stream_by_id) # type: ignore[assignment]
|
|
synchronize = staticmethod(torch.cuda.synchronize)
|
|
get_device_properties = staticmethod(torch.cuda.get_device_properties) # type: ignore[assignment]
|
|
get_raw_stream = staticmethod(get_cuda_stream) # type: ignore[assignment, arg-type]
|
|
exchange_device = staticmethod(torch.cuda._exchange_device) # type: ignore[arg-type, has-type]
|
|
maybe_exchange_device = staticmethod(torch.cuda._maybe_exchange_device) # type: ignore[arg-type, has-type]
|
|
memory_allocated = staticmethod(torch.cuda.memory_allocated)
|
|
is_bf16_supported = staticmethod(torch.cuda.is_bf16_supported) # type: ignore[arg-type]
|
|
|
|
# Can be mock patched by @patch decorator.
|
|
@staticmethod
|
|
def is_available() -> bool:
|
|
return torch.cuda.is_available()
|
|
|
|
@staticmethod
|
|
def get_compute_capability(device: torch.types.Device = None) -> Union[int, str]:
|
|
if torch.version.hip is None:
|
|
major, min = torch.cuda.get_device_capability(device)
|
|
return major * 10 + min
|
|
else:
|
|
return torch.cuda.get_device_properties(device).gcnArchName.split(":", 1)[0]
|
|
|
|
@staticmethod
|
|
def is_triton_capable(device: torch.types.Device = None) -> bool:
|
|
return (
|
|
torch.version.hip is not None
|
|
or torch.cuda.get_device_properties(device).major >= 7
|
|
)
|
|
|
|
@staticmethod
|
|
def raise_if_triton_unavailable(device: torch.types.Device = None) -> None:
|
|
from torch._inductor.exc import GPUTooOldForTriton
|
|
|
|
if not CudaInterface.is_triton_capable(device):
|
|
device_props = torch.cuda.get_device_properties(device)
|
|
raise GPUTooOldForTriton(device_props, inspect.currentframe())
|
|
|
|
import triton.backends
|
|
|
|
if torch.version.hip is not None:
|
|
if "amd" not in triton.backends.backends:
|
|
raise RuntimeError("triton not built with the 'amd' backend")
|
|
elif "nvidia" not in triton.backends.backends:
|
|
raise RuntimeError("triton not built with the 'nvidia' backend")
|
|
|
|
|
|
get_mtia_stream: Optional[Callable[[int], int]]
|
|
if torch.mtia._is_compiled():
|
|
from torch._C import _mtia_getCurrentRawStream as get_mtia_stream
|
|
else:
|
|
get_mtia_stream = None
|
|
|
|
|
|
class MtiaInterface(DeviceInterface):
|
|
device = torch.mtia.device # type: ignore[assignment]
|
|
Event = torch.mtia.Event # type: ignore[assignment]
|
|
Stream = torch.mtia.Stream # type: ignore[assignment]
|
|
|
|
class Worker:
|
|
@staticmethod
|
|
def set_device(device: int) -> None:
|
|
caching_worker_current_devices["mtia"] = device
|
|
|
|
@staticmethod
|
|
def current_device() -> int:
|
|
if "mtia" in caching_worker_current_devices:
|
|
return caching_worker_current_devices["mtia"]
|
|
return torch.mtia.current_device()
|
|
|
|
@staticmethod
|
|
def get_device_properties(device: torch.types.Device = None) -> Any:
|
|
if device is not None:
|
|
if isinstance(device, str):
|
|
device = torch.device(device)
|
|
assert device.type == "mtia"
|
|
if isinstance(device, torch.device):
|
|
device = device.index
|
|
if device is None:
|
|
device = MtiaInterface.Worker.current_device()
|
|
|
|
if "mtia" not in caching_worker_device_properties:
|
|
device_prop = [
|
|
torch.mtia.get_device_properties(i)
|
|
for i in range(torch.mtia.device_count())
|
|
]
|
|
caching_worker_device_properties["mtia"] = device_prop
|
|
|
|
return caching_worker_device_properties["mtia"][device]
|
|
|
|
current_device = staticmethod(torch.mtia.current_device)
|
|
set_device = staticmethod(torch.mtia.set_device) # type: ignore[assignment]
|
|
device_count = staticmethod(torch.mtia.device_count)
|
|
stream = staticmethod(torch.mtia.stream) # type: ignore[assignment]
|
|
current_stream = staticmethod(torch.mtia.current_stream)
|
|
set_stream = staticmethod(torch.mtia.set_stream) # type: ignore[assignment]
|
|
_set_stream_by_id = staticmethod(torch.mtia._set_stream_by_id) # type: ignore[assignment]
|
|
synchronize = staticmethod(torch.mtia.synchronize)
|
|
get_device_properties = staticmethod(torch.mtia.get_device_properties) # type: ignore[assignment]
|
|
get_raw_stream = staticmethod(get_mtia_stream) # type: ignore[assignment, arg-type]
|
|
exchange_device = staticmethod(torch.mtia._exchange_device) # type: ignore[arg-type]
|
|
maybe_exchange_device = staticmethod(torch.mtia._maybe_exchange_device) # type: ignore[arg-type]
|
|
memory_allocated = staticmethod(torch.mtia.memory_allocated) # type: ignore[assignment]
|
|
is_bf16_supported = staticmethod(torch.mtia.is_bf16_supported) # type: ignore[arg-type]
|
|
|
|
# Can be mock patched by @patch decorator.
|
|
@staticmethod
|
|
def is_available() -> bool:
|
|
ret = torch.mtia.is_available()
|
|
return ret
|
|
|
|
@staticmethod
|
|
def get_compute_capability(device: torch.types.Device = None) -> Any:
|
|
cc = torch.mtia.get_device_capability(device)
|
|
return cc
|
|
|
|
@staticmethod
|
|
def is_triton_capable(device: torch.types.Device = None) -> bool:
|
|
return True
|
|
|
|
@staticmethod
|
|
def raise_if_triton_unavailable(evice: torch.types.Device = None) -> None:
|
|
import triton.backends
|
|
|
|
if "mtia" not in triton.backends.backends:
|
|
raise RuntimeError("triton not built with the 'mtia' backend")
|
|
|
|
|
|
get_xpu_stream: Optional[Callable[[int], int]]
|
|
if torch.xpu._is_compiled():
|
|
from torch._C import _xpu_getCurrentRawStream as get_xpu_stream
|
|
else:
|
|
get_xpu_stream = None
|
|
|
|
|
|
class XpuInterface(DeviceInterface):
|
|
device = torch.xpu.device # type: ignore[assignment]
|
|
Event = torch.xpu.Event # type: ignore[assignment]
|
|
Stream = torch.xpu.Stream # type: ignore[assignment]
|
|
|
|
class Worker:
|
|
@staticmethod
|
|
def set_device(device: int) -> None:
|
|
caching_worker_current_devices["xpu"] = device
|
|
|
|
@staticmethod
|
|
def current_device() -> int:
|
|
if "xpu" in caching_worker_current_devices:
|
|
return caching_worker_current_devices["xpu"]
|
|
return torch.xpu.current_device()
|
|
|
|
@staticmethod
|
|
def get_device_properties(device: torch.types.Device = None) -> Any:
|
|
if device is not None:
|
|
if isinstance(device, str):
|
|
device = torch.device(device)
|
|
assert device.type == "xpu"
|
|
if isinstance(device, torch.device):
|
|
device = device.index
|
|
if device is None:
|
|
device = XpuInterface.Worker.current_device()
|
|
|
|
if "xpu" not in caching_worker_device_properties:
|
|
device_prop = [
|
|
torch.xpu.get_device_properties(i)
|
|
for i in range(torch.xpu.device_count())
|
|
]
|
|
caching_worker_device_properties["xpu"] = device_prop
|
|
|
|
return caching_worker_device_properties["xpu"][device]
|
|
|
|
current_device = staticmethod(torch.xpu.current_device)
|
|
set_device = staticmethod(torch.xpu.set_device)
|
|
device_count = staticmethod(torch.xpu.device_count)
|
|
stream = staticmethod(torch.xpu.stream) # type: ignore[assignment]
|
|
current_stream = staticmethod(torch.xpu.current_stream)
|
|
set_stream = staticmethod(torch.xpu.set_stream) # type: ignore[assignment]
|
|
_set_stream_by_id = staticmethod(torch.xpu._set_stream_by_id) # type: ignore[assignment]
|
|
synchronize = staticmethod(torch.xpu.synchronize)
|
|
get_device_properties = staticmethod(torch.xpu.get_device_properties) # type: ignore[assignment]
|
|
get_raw_stream = staticmethod(get_xpu_stream) # type: ignore[assignment, arg-type]
|
|
exchange_device = staticmethod(torch.xpu._exchange_device) # type: ignore[arg-type]
|
|
maybe_exchange_device = staticmethod(torch.xpu._maybe_exchange_device) # type: ignore[arg-type]
|
|
memory_allocated = staticmethod(torch.xpu.memory_allocated)
|
|
|
|
# Can be mock patched by @patch decorator.
|
|
@staticmethod
|
|
def is_available() -> bool:
|
|
return torch.xpu.is_available()
|
|
|
|
@staticmethod
|
|
def get_compute_capability(device: torch.types.Device = None) -> Any:
|
|
cc = torch.xpu.get_device_capability(device)
|
|
return cc
|
|
|
|
@staticmethod
|
|
def is_bf16_supported(including_emulation: bool = False) -> bool:
|
|
return torch.xpu.is_bf16_supported()
|
|
|
|
@staticmethod
|
|
def is_triton_capable(device: torch.types.Device = None) -> bool:
|
|
return True
|
|
|
|
@staticmethod
|
|
def raise_if_triton_unavailable(device: torch.types.Device = None) -> None:
|
|
import triton.backends
|
|
|
|
if "intel" not in triton.backends.backends:
|
|
raise RuntimeError("triton not built with the 'intel' backend")
|
|
|
|
|
|
@dataclass
|
|
class CpuDeviceProperties:
|
|
multi_processor_count: int
|
|
|
|
|
|
class CpuInterface(DeviceInterface):
|
|
class Event(torch.Event):
|
|
def __init__(self, enable_timing: bool = True) -> None:
|
|
self.time = 0.0
|
|
|
|
def elapsed_time(self, end_event: Any) -> float:
|
|
return (end_event.time - self.time) * 1000
|
|
|
|
def record(self, stream: Any = None) -> None:
|
|
self.time = time.perf_counter()
|
|
|
|
class Worker:
|
|
@staticmethod
|
|
def get_device_properties(
|
|
device: torch.types.Device = None,
|
|
) -> CpuDeviceProperties:
|
|
import multiprocessing
|
|
|
|
cpu_count = multiprocessing.cpu_count()
|
|
return CpuDeviceProperties(cpu_count)
|
|
|
|
@staticmethod
|
|
def is_available() -> bool:
|
|
return True
|
|
|
|
@staticmethod
|
|
def is_bf16_supported(including_emulation: bool = False) -> bool:
|
|
return True
|
|
|
|
@staticmethod
|
|
def get_compute_capability(device: torch.types.Device = None) -> str:
|
|
return ""
|
|
|
|
@staticmethod
|
|
def get_raw_stream(device_idx: Any) -> int:
|
|
return 0
|
|
|
|
@staticmethod
|
|
def current_device() -> int:
|
|
return 0
|
|
|
|
@staticmethod
|
|
def synchronize(device: torch.types.Device = None) -> None:
|
|
pass
|
|
|
|
@staticmethod
|
|
def is_triton_capable(device: torch.types.Device = None) -> bool:
|
|
return True
|
|
|
|
@staticmethod
|
|
def raise_if_triton_unavailable(device: torch.types.Device = None) -> None:
|
|
import triton.backends
|
|
|
|
if "cpu" not in triton.backends.backends:
|
|
raise RuntimeError("triton not built with the 'cpu' backend")
|
|
|
|
|
|
class MpsInterface(DeviceInterface):
|
|
@staticmethod
|
|
def is_bf16_supported(including_emulation: bool = False) -> bool:
|
|
return torch.backends.mps.is_macos_or_newer(14, 0)
|
|
|
|
@classmethod
|
|
def is_dtype_supported(
|
|
cls, dtype: torch.dtype, including_emulation: bool = False
|
|
) -> bool:
|
|
if dtype in [torch.float64, torch.complex128]:
|
|
return False
|
|
return dtype != torch.bfloat16 or cls.is_bf16_supported(including_emulation)
|
|
|
|
@staticmethod
|
|
def is_available() -> bool:
|
|
return torch.backends.mps.is_available()
|
|
|
|
@staticmethod
|
|
def current_device() -> int:
|
|
return 0
|
|
|
|
@staticmethod
|
|
def get_compute_capability(device: torch.types.Device = None) -> str:
|
|
return ""
|
|
|
|
@staticmethod
|
|
def synchronize(device: torch.types.Device = None) -> None:
|
|
torch.mps.synchronize()
|
|
|
|
class Worker:
|
|
@staticmethod
|
|
def get_device_properties(device: torch.types.Device = None) -> dict[str, Any]:
|
|
return {}
|
|
|
|
@staticmethod
|
|
def current_device() -> int:
|
|
return 0
|
|
|
|
|
|
device_interfaces: dict[str, type[DeviceInterface]] = {}
|
|
_device_initialized = False
|
|
|
|
|
|
def register_interface_for_device(
|
|
device: Union[str, torch.device], device_interface: type[DeviceInterface]
|
|
) -> None:
|
|
if isinstance(device, torch.device):
|
|
device = device.type
|
|
device_interfaces[device] = device_interface
|
|
|
|
|
|
def get_interface_for_device(device: Union[str, torch.device]) -> type[DeviceInterface]:
|
|
if isinstance(device, torch.device):
|
|
device = device.type
|
|
if not _device_initialized:
|
|
init_device_reg()
|
|
if device in device_interfaces:
|
|
return device_interfaces[device]
|
|
raise NotImplementedError(f"No interface for device {device}")
|
|
|
|
|
|
def get_registered_device_interfaces() -> Iterable[tuple[str, type[DeviceInterface]]]:
|
|
if not _device_initialized:
|
|
init_device_reg()
|
|
return device_interfaces.items()
|
|
|
|
|
|
def init_device_reg() -> None:
|
|
global _device_initialized
|
|
register_interface_for_device("cuda", CudaInterface)
|
|
for i in range(torch.cuda.device_count()):
|
|
register_interface_for_device(f"cuda:{i}", CudaInterface)
|
|
|
|
register_interface_for_device("xpu", XpuInterface)
|
|
for i in range(torch.xpu.device_count()):
|
|
register_interface_for_device(f"xpu:{i}", XpuInterface)
|
|
|
|
register_interface_for_device("mtia", MtiaInterface)
|
|
for i in range(torch.mtia.device_count()):
|
|
register_interface_for_device(f"mtia:{i}", MtiaInterface)
|
|
|
|
register_interface_for_device("cpu", CpuInterface)
|
|
register_interface_for_device("mps", MpsInterface)
|
|
|
|
_device_initialized = True
|