mirror of
https://github.com/pytorch/pytorch.git
synced 2025-10-21 21:49:24 +08:00
Test Plan: revert-hammer
Differential Revision:
D26280518 (a184ef8df5
)
Original commit changeset: fd466e4b4488
fbshipit-source-id: e4def49703ab525c063b8cc5d11296b9cc614fbb
82 lines
2.4 KiB
C++
82 lines
2.4 KiB
C++
#include <torch/csrc/jit/backends/backend.h>
|
|
|
|
namespace torch {
|
|
namespace jit {
|
|
// This test JIT backend is intended to do the minimal amount of work
|
|
// necessary to test that the JIT backend registration endpoints and
|
|
// code generation are working correctly. It is not intended to
|
|
// produce numerically correct results.
|
|
class TestBackend : public PyTorchBackendInterface {
|
|
public:
|
|
// Constructor.
|
|
explicit TestBackend() {}
|
|
virtual ~TestBackend() = default;
|
|
|
|
c10::IValue preprocess(
|
|
c10::IValue mod,
|
|
c10::impl::GenericDict method_compile_spec) override {
|
|
return mod;
|
|
}
|
|
|
|
c10::impl::GenericDict compile(
|
|
c10::IValue processed,
|
|
c10::impl::GenericDict method_compile_spec) override {
|
|
auto spec =
|
|
c10::impl::toTypedDict<std::string, at::IValue>(method_compile_spec);
|
|
|
|
// Return the same string as a value for every key in method_compile_spec.
|
|
auto handles = c10::Dict<std::string, std::string>();
|
|
for (const auto& it : spec) {
|
|
handles.insert(it.key(), it.key());
|
|
}
|
|
return c10::impl::toGenericDict(handles);
|
|
}
|
|
c10::impl::GenericList execute(
|
|
c10::IValue handle,
|
|
c10::impl::GenericList inputs) override {
|
|
TORCH_INTERNAL_ASSERT(handle.isString());
|
|
TORCH_INTERNAL_ASSERT(inputs.size() > 0);
|
|
|
|
c10::List<at::Tensor> output_list;
|
|
|
|
// Implement simple accumulator and negative accumulator (?) ops. Return one
|
|
// or both of them depending on the handle to make sure multiple outputs are
|
|
// handled.
|
|
c10::IValue value = inputs[0];
|
|
at::Tensor accum = value.toTensor();
|
|
accum = accum.clone();
|
|
at::Tensor sub_accum = value.toTensor();
|
|
sub_accum = sub_accum.clone();
|
|
|
|
for (size_t i = 1, e = inputs.size(); i < e; ++i) {
|
|
value = inputs[i];
|
|
accum.add_(value.toTensor(), 1.0);
|
|
sub_accum.sub_(value.toTensor(), 1.0);
|
|
}
|
|
|
|
if (handle.toStringRef() == "accum") {
|
|
output_list.emplace_back(accum);
|
|
} else if (handle.toStringRef() == "sub_accum") {
|
|
output_list.emplace_back(sub_accum);
|
|
} else if (handle.toStringRef() == "forward") {
|
|
output_list.emplace_back(accum);
|
|
output_list.emplace_back(sub_accum);
|
|
}
|
|
|
|
return c10::impl::toList(output_list);
|
|
}
|
|
};
|
|
|
|
c10::IValue preprocess(
|
|
const Module& mod,
|
|
const c10::Dict<IValue, IValue>& method_compile_spec) {
|
|
return mod._ivalue();
|
|
}
|
|
|
|
namespace {
|
|
static auto cls = torch::jit::backend<TestBackend>("test_backend", preprocess);
|
|
}
|
|
|
|
} // namespace jit
|
|
} // namespace torch
|