Files
pytorch/benchmarks/sparse/benchmark_semi_structured_sparsity.py
PyTorch MergeBot cc90ba8924 Revert "[sparse] add extra options to _cslt_spare_mm (#137427)"
This reverts commit 45b30a5aecf31ec26d9b2dc86d5170f9618a7766.

Reverted https://github.com/pytorch/pytorch/pull/137427 on behalf of https://github.com/huydhn due to Sorry for reverting your change but test_sparse_semi_structured is failing in trunk after it lands ([comment](https://github.com/pytorch/pytorch/pull/137427#issuecomment-2494047577))
2024-11-22 15:40:21 +00:00

254 lines
6.5 KiB
Python

import argparse
import random
import pandas as pd
from tqdm import tqdm
import torch
import torch.utils.benchmark as benchmark
from torch import nn
from torch.sparse import SparseSemiStructuredTensor, to_sparse_semi_structured
torch.set_printoptions(
precision=2,
threshold=None,
edgeitems=16,
linewidth=480,
profile=None,
sci_mode=False,
)
# helper model definition for pruner
class Model(nn.Module):
def __init__(self, m, k, dtype=None):
super().__init__()
# transposed so reversed
self.linear = nn.Linear(k, m)
def forward(self, x):
return self.linear(x)
def rand_sparse_semi_structured_mask(
r, c, dtype=torch.float16, device="cuda", choice=None
):
"""
This function returns a 1:2 sparse matrix of size (r, c).
Note that this means this matrix will also be 2:4 and 4:8 sparse as well.
"""
choices = [[0, 1], [1, 0]]
mask_entries = [choice or random.choice(choices) for i in range(r * c // 2)]
return (
torch.tensor(mask_entries, dtype=dtype, device=device)
.reshape(r, c)
.contiguous()
)
def test_linear(m, k, n, dtype, contiguous, backend):
SparseSemiStructuredTensor._FORCE_CUTLASS = backend == "cutlass"
mask = rand_sparse_semi_structured_mask(m, k, dtype=dtype)
sparse_weight = torch.rand(m, k).to(dtype).cuda() * mask
input_tensor = torch.zeros(n, k).to(dtype).cuda()
model = Model(m, k).to(dtype).cuda().eval()
dense_measurement = benchmark.Timer(
stmt="model(input_tensor)",
globals=locals(),
).blocked_autorange()
dense_output = model(input_tensor)
print(dense_output.shape)
# sparsify weights
model.linear.weight = nn.Parameter(
to_sparse_semi_structured(
sparse_weight,
)
)
sparse_output = model(input_tensor)
print(sparse_output.shape)
sparse_measurement = benchmark.Timer(
stmt="model(input_tensor)",
globals=locals(),
).blocked_autorange()
correct = torch.allclose(dense_output, sparse_output, rtol=1e-3, atol=1e-3)
return {
"test_function": "linear",
"m": m,
"k": k,
"n": n,
"dtype": str(dtype),
"backend": backend,
"sparse_latency (ms)": sparse_measurement.median * 1000,
"dense_latency (ms)": dense_measurement.median * 1000,
"speedup (d/s)": dense_measurement.median / sparse_measurement.median,
"correct": correct,
"contiguous": sparse_output.is_contiguous(),
}
def test_tensor(m, k, n, dtype, contiguous, backend):
A = rand_sparse_semi_structured_mask(m, k, dtype=dtype)
B = torch.zeros(k, n).to(dtype).cuda()
bias = torch.rand(n).to(dtype).cuda()
sA = to_sparse_semi_structured(A)
# torch.mm calculation
if dtype is not torch.int8:
dense_output = torch.mm(A, B)
dense_measurement = benchmark.Timer(
stmt="torch.mm(A, B)",
globals=locals(),
).blocked_autorange()
else:
print("int8 baseline not supported")
dense_output = torch.mm(sA, B)
dense_measurement = benchmark.Timer(
stmt="torch.mm(sA, B)",
globals=locals(),
).blocked_autorange()
sparse_output = torch.mm(sA, B)
sparse_measurement = benchmark.Timer(
stmt="torch.mm(sA, B)",
globals=locals(),
).blocked_autorange()
correct = torch.allclose(dense_output, sparse_output, rtol=1e-3, atol=1e-3)
return {
"test_function": "tensor",
"m": m,
"k": k,
"n": n,
"dtype": str(dtype),
"backend": backend,
"sparse_latency (ms)": sparse_measurement.median * 1000,
"dense_latency (ms)": dense_measurement.median * 1000,
"speedup (d/s)": dense_measurement.median / sparse_measurement.median,
"correct": correct,
"contiguous": sparse_output.is_contiguous(),
}
if __name__ == "__main__":
dtype_lookup = {
"int8": torch.int8,
"fp16": torch.float16,
"bf16": torch.bfloat16,
"fp32": torch.float32,
}
parser = argparse.ArgumentParser(description="Semi-Structured Sparsity Benchmarks")
parser.add_argument(
"--mode",
type=str,
choices=[
"nvidia-bert",
"nvidia-fixed-k",
"nvidia-fixed-mn",
],
)
parser.add_argument(
"--dtype",
type=str,
choices=dtype_lookup.keys(),
default="fp16",
)
parser.add_argument(
"--backend", type=str, choices=["cutlass", "cusparselt"], default="cusparselt"
)
parser.add_argument("-contiguous", action="store_true")
parser.add_argument("-e2e", action="store_true")
parser.add_argument("-save", action="store_true")
args = parser.parse_args()
if args.e2e:
eval_fn = test_linear
else:
eval_fn = test_tensor
print(f"Started benchmark: {args.mode} | dtype: {args.dtype}")
dtype = dtype_lookup[args.dtype]
if args.mode == "nvidia-bert":
bert_shapes = [
(3072, 1024, 16384),
(4096, 1024, 16384),
(1024, 1024, 16384),
(1024, 4096, 16384),
]
results = (
eval_fn(m, k, n, dtype, args.contiguous, args.backend)
for (m, k, n) in tqdm(bert_shapes)
)
elif args.mode == "nvidia-fixed-k":
mn_vals = [
3072,
4096,
5120,
6144,
7168,
8192,
9216,
10240,
11264,
12288,
13312,
14336,
15360,
16384,
17408,
18432,
19456,
20480,
]
results = (
eval_fn(mn, 10240, mn, dtype, args.contiguous, args.backend)
for mn in tqdm(mn_vals)
)
elif args.mode == "nvidia-fixed-mn":
k_vals = [
2560,
3840,
5120,
6400,
7680,
8960,
10240,
11520,
12800,
14080,
15360,
16640,
17920,
19200,
20480,
]
results = (
eval_fn(10240, k, 10240, dtype, args.contiguous, args.backend)
for k in tqdm(k_vals)
)
df = pd.DataFrame.from_records(results)
if args.save:
save_file = f"{args.mode}_{args.dtype}_{args.backend}.csv"
df.to_csv(save_file)
print(f"Finished benchmark: {args.mode} saved results to {save_file}")
print(df)