Files
pytorch/torch/csrc/utils/tensor_numpy.cpp
Mike Ruberry cb4e6d025a Updates numpy to tensor negative stride error message (#33254)
Summary:
See https://discuss.pytorch.org/t/bugs-about-torch-from-numpy-array/43312.

This update incorporates albanD 's suggestion into the error message, saving future users from having to ask or look on the forums if they encounter this issue and don't mind making their arrays contiguous.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/33254

Differential Revision: D19885808

Pulled By: mruberry

fbshipit-source-id: 8f0fd994cf8c088bf3c3940ab4dfb3ddbc5b3ede
2020-02-13 15:38:52 -08:00

337 lines
11 KiB
C++

#include <torch/csrc/THP.h>
#include <torch/csrc/utils/tensor_numpy.h>
#include <torch/csrc/utils/numpy_stub.h>
#ifndef USE_NUMPY
namespace torch { namespace utils {
PyObject* tensor_to_numpy(const at::Tensor& tensor) {
throw std::runtime_error("PyTorch was compiled without NumPy support");
}
at::Tensor tensor_from_numpy(PyObject* obj) {
throw std::runtime_error("PyTorch was compiled without NumPy support");
}
bool is_numpy_int(PyObject* obj) {
throw std::runtime_error("PyTorch was compiled without NumPy support");
}
bool is_numpy_scalar(PyObject* obj) {
throw std::runtime_error("PyTorch was compiled without NumPy support");
}
at::Tensor tensor_from_cuda_array_interface(PyObject* obj) {
throw std::runtime_error("PyTorch was compiled without NumPy support");
}
}}
#else
#include <torch/csrc/DynamicTypes.h>
#include <torch/csrc/Exceptions.h>
#include <torch/csrc/autograd/python_variable.h>
#include <torch/csrc/utils/object_ptr.h>
#include <ATen/ATen.h>
#include <ATen/TensorUtils.h>
#include <memory>
#include <sstream>
#include <stdexcept>
using namespace at;
using namespace torch::autograd;
namespace torch { namespace utils {
static std::vector<npy_intp> to_numpy_shape(IntArrayRef x) {
// shape and stride conversion from int64_t to npy_intp
auto nelem = x.size();
auto result = std::vector<npy_intp>(nelem);
for (size_t i = 0; i < nelem; i++) {
result[i] = static_cast<npy_intp>(x[i]);
}
return result;
}
static std::vector<int64_t> to_aten_shape(int ndim, npy_intp* values) {
// shape and stride conversion from npy_intp to int64_t
auto result = std::vector<int64_t>(ndim);
for (int i = 0; i < ndim; i++) {
result[i] = static_cast<int64_t>(values[i]);
}
return result;
}
static std::vector<int64_t> seq_to_aten_shape(PyObject *py_seq) {
int ndim = PySequence_Length(py_seq);
if (ndim == -1) {
throw TypeError("shape and strides must be sequences");
}
auto result = std::vector<int64_t>(ndim);
for (int i = 0; i < ndim; i++) {
auto item = THPObjectPtr(PySequence_GetItem(py_seq, i));
if (!item) throw python_error();
result[i] = PyLong_AsLongLong(item);
if (result[i] == -1 && PyErr_Occurred()) throw python_error();
}
return result;
}
PyObject* tensor_to_numpy(const at::Tensor& tensor) {
if (tensor.device().type() != DeviceType::CPU) {
throw TypeError(
"can't convert %s device type tensor to numpy. Use Tensor.cpu() to "
"copy the tensor to host memory first.", tensor.device().type());
}
if (tensor.layout() != Layout::Strided) {
throw TypeError(
"can't convert %s layout tensor to numpy."
"convert the tensor to a strided layout first.", tensor.layout());
}
if (tensor.requires_grad()) {
throw std::runtime_error(
"Can't call numpy() on Variable that requires grad. "
"Use var.detach().numpy() instead.");
}
auto dtype = aten_to_numpy_dtype(tensor.scalar_type());
auto sizes = to_numpy_shape(tensor.sizes());
auto strides = to_numpy_shape(tensor.strides());
// NumPy strides use bytes. Torch strides use element counts.
auto element_size_in_bytes = tensor.element_size();
for (auto& stride : strides) {
stride *= element_size_in_bytes;
}
auto array = THPObjectPtr(PyArray_New(
&PyArray_Type,
tensor.dim(),
sizes.data(),
dtype,
strides.data(),
tensor.data_ptr(),
0,
NPY_ARRAY_ALIGNED | NPY_ARRAY_WRITEABLE,
nullptr));
if (!array) return nullptr;
// TODO: This attempts to keep the underlying memory alive by setting the base
// object of the ndarray to the tensor and disabling resizes on the storage.
// This is not sufficient. For example, the tensor's storage may be changed
// via Tensor.set_, which can free the underlying memory.
PyObject* py_tensor = THPVariable_Wrap(tensor);
if (!py_tensor) throw python_error();
if (PyArray_SetBaseObject((PyArrayObject*)array.get(), py_tensor) == -1) {
return nullptr;
}
// Use the private storage API
tensor.storage().unsafeGetStorageImpl()->set_resizable(false);
return array.release();
}
at::Tensor tensor_from_numpy(PyObject* obj) {
if (!PyArray_Check(obj)) {
throw TypeError("expected np.ndarray (got %s)", Py_TYPE(obj)->tp_name);
}
auto array = (PyArrayObject*)obj;
int ndim = PyArray_NDIM(array);
auto sizes = to_aten_shape(ndim, PyArray_DIMS(array));
auto strides = to_aten_shape(ndim, PyArray_STRIDES(array));
// NumPy strides use bytes. Torch strides use element counts.
auto element_size_in_bytes = PyArray_ITEMSIZE(array);
for (auto& stride : strides) {
if (stride%element_size_in_bytes != 0) {
throw ValueError(
"given numpy array strides not a multiple of the element byte size. "
"Copy the numpy array to reallocate the memory.");
}
stride /= element_size_in_bytes;
}
size_t storage_size = 1;
for (int i = 0; i < ndim; i++) {
if (strides[i] < 0) {
throw ValueError(
"At least one stride in the given numpy array is negative, "
"and tensors with negative strides are not currently supported. "
"(You can probably work around this by making a copy of your array "
" with array.copy().) ");
}
// XXX: this won't work for negative strides
storage_size += (sizes[i] - 1) * strides[i];
}
void* data_ptr = PyArray_DATA(array);
if (!PyArray_EquivByteorders(PyArray_DESCR(array)->byteorder, NPY_NATIVE)) {
throw ValueError(
"given numpy array has byte order different from the native byte order. "
"Conversion between byte orders is currently not supported.");
}
Py_INCREF(obj);
return at::from_blob(
data_ptr,
sizes,
strides,
[obj](void* data) {
pybind11::gil_scoped_acquire gil;
Py_DECREF(obj);
},
at::device(kCPU).dtype(numpy_dtype_to_aten(PyArray_TYPE(array)))
);
}
int aten_to_numpy_dtype(const ScalarType scalar_type) {
switch (scalar_type) {
case kComplexDouble: return NPY_COMPLEX128;
case kComplexFloat: return NPY_COMPLEX64;
case kDouble: return NPY_DOUBLE;
case kFloat: return NPY_FLOAT;
case kHalf: return NPY_HALF;
case kLong: return NPY_INT64;
case kInt: return NPY_INT32;
case kShort: return NPY_INT16;
case kChar: return NPY_INT8;
case kByte: return NPY_UINT8;
case kBool: return NPY_BOOL;
default:
throw TypeError("Got unsupported ScalarType ", toString(scalar_type));
}
}
ScalarType numpy_dtype_to_aten(int dtype) {
switch (dtype) {
case NPY_DOUBLE: return kDouble;
case NPY_FLOAT: return kFloat;
case NPY_HALF: return kHalf;
case NPY_INT16: return kShort;
case NPY_INT8: return kChar;
case NPY_UINT8: return kByte;
case NPY_BOOL: return kBool;
default:
// Workaround: MSVC does not support two switch cases that have the same value
if (dtype == NPY_INT || dtype == NPY_INT32) {
// To cover all cases we must use NPY_INT because
// NPY_INT32 is an alias which maybe equal to:
// - NPY_INT, when sizeof(int) = 4 and sizeof(long) = 8
// - NPY_LONG, when sizeof(int) = 4 and sizeof(long) = 4
return kInt;
} else if (dtype == NPY_LONGLONG || dtype == NPY_INT64) {
// NPY_INT64 is an alias which maybe equal to:
// - NPY_LONG, when sizeof(long) = 8 and sizeof(long long) = 8
// - NPY_LONGLONG, when sizeof(long) = 4 and sizeof(long long) = 8
return kLong;
} else {
break; // break as if this is one of the cases above because this is only a workaround
}
}
auto pytype = THPObjectPtr(PyArray_TypeObjectFromType(dtype));
if (!pytype) throw python_error();
throw TypeError(
"can't convert np.ndarray of type %s. The only supported types are: "
"float64, float32, float16, int64, int32, int16, int8, uint8, and bool.",
((PyTypeObject*)pytype.get())->tp_name);
}
bool is_numpy_int(PyObject* obj) {
return PyArray_IsScalar((obj), Integer);
}
bool is_numpy_scalar(PyObject* obj) {
return is_numpy_int(obj) || PyArray_IsScalar(obj, Floating);
}
at::Tensor tensor_from_cuda_array_interface(PyObject* obj) {
auto cuda_dict = THPObjectPtr(PyObject_GetAttrString(obj, "__cuda_array_interface__"));
TORCH_INTERNAL_ASSERT(cuda_dict);
if (!PyDict_Check(cuda_dict)) {
throw TypeError("`__cuda_array_interface__` must be a dict");
}
// Extract the `obj.__cuda_array_interface__['shape']` attribute
std::vector<int64_t> sizes;
{
PyObject *py_shape = PyDict_GetItemString(cuda_dict, "shape");
if (py_shape == nullptr) {
throw TypeError("attribute `shape` must exist");
}
sizes = seq_to_aten_shape(py_shape);
}
// Extract the `obj.__cuda_array_interface__['typestr']` attribute
ScalarType dtype;
int dtype_size_in_bytes;
{
PyObject *py_typestr = PyDict_GetItemString(cuda_dict, "typestr");
if (py_typestr == nullptr) {
throw TypeError("attribute `typestr` must exist");
}
PyArray_Descr *descr;
if(!PyArray_DescrConverter(py_typestr, &descr)) {
throw ValueError("cannot parse `typestr`");
}
dtype = numpy_dtype_to_aten(descr->type_num);
dtype_size_in_bytes = descr->elsize;
TORCH_INTERNAL_ASSERT(dtype_size_in_bytes > 0);
}
// Extract the `obj.__cuda_array_interface__['data']` attribute
void *data_ptr;
{
PyObject *py_data = PyDict_GetItemString(cuda_dict, "data");
if (py_data == nullptr) {
throw TypeError("attribute `shape` data exist");
}
if(!PyTuple_Check(py_data) || PyTuple_GET_SIZE(py_data) != 2) {
throw TypeError("`data` must be a 2-tuple of (int, bool)");
}
data_ptr = PyLong_AsVoidPtr(PyTuple_GET_ITEM(py_data, 0));
if (data_ptr == nullptr && PyErr_Occurred()) {
throw python_error();
}
int read_only = PyObject_IsTrue(PyTuple_GET_ITEM(py_data, 1));
if (read_only == -1) {
throw python_error();
}
if (read_only) {
throw TypeError("the read only flag is not supported, should always be False");
}
}
// Extract the `obj.__cuda_array_interface__['strides']` attribute
std::vector<int64_t> strides;
{
PyObject *py_strides = PyDict_GetItemString(cuda_dict, "strides");
if (py_strides != nullptr && py_strides != Py_None) {
if (PySequence_Length(py_strides) == -1 || PySequence_Length(py_strides) != sizes.size()) {
throw TypeError("strides must be a sequence of the same length as shape");
}
strides = seq_to_aten_shape(py_strides);
// __cuda_array_interface__ strides use bytes. Torch strides use element counts.
for (auto& stride : strides) {
if (stride%dtype_size_in_bytes != 0) {
throw ValueError(
"given array strides not a multiple of the element byte size. "
"Make a copy of the array to reallocate the memory.");
}
stride /= dtype_size_in_bytes;
}
} else {
strides = at::detail::defaultStrides(sizes);
}
}
Py_INCREF(obj);
return at::from_blob(
data_ptr,
sizes,
strides,
[obj](void* data) {
pybind11::gil_scoped_acquire gil;
Py_DECREF(obj);
},
at::device(kCUDA).dtype(dtype)
);
}
}} // namespace torch::utils
#endif // USE_NUMPY