mirror of
https://github.com/pytorch/pytorch.git
synced 2025-10-21 05:34:18 +08:00
Here's the overview: There's a new contextmanager singleton called MetricsContext. Entering the MetricsContext is how we demarcate the boundary on which we'll create a single CompilationMetrics object, and therefore, a single dynamo_compile log entry. While we're inside the MetricsContext, we can update/set many different metrics. Most importantly: `dynamo_timed` can also update the in-progress MetricsContext. In the proposal here, we tell `dynamo_timed` that we want it to do so by providing the name of the MetricsContext field to increment. There can be many `dynamo_timed` calls in different parts of the code updating different fields. Then when the MetricsContext exits, that's when the logging of everything gathered finally happens. One potential footgun is trying to use `dynamo_timed` when we haven't entered the MetricsContext, but we assert on that problem. Another problem is that we re-enter the context recursively, but we watch for that and do the logging only when the outermost exits. Some specifics: * Introduce MetricsContext - a context manager that on exit, records the CompilationMetrics (which also logs to dynamo_compile). * Completely remove the concept of frame_phase_timing. Instead, update the MetricsContext during compilation, either directly or via dynamo_timed. * Remove some globals we previously used to accumulate counters to later populate a CompilationMetrics. We use CompilationMetrics set/update/increment APIs instead. * `record_compilation_metrics` is now called on exit from MetricsContext. * Populate legacy CompilationMetrics fields right before logging, inside `record_compilation_metrics`. * Remove the one-off `add_remote_cache_time_saved` helper; capture that timing directly into the MetricsContext. And specifically, several changes to dynamo_timed: * "Modernize" the parameters and update all callsites accordingly. * Move the backwards logging of the CompilationMetrics to the backwards compile location. * Add a parameter for which CompilationMetrics field to update Pull Request resolved: https://github.com/pytorch/pytorch/pull/139849 Approved by: https://github.com/ezyang ghstack dependencies: #140094
1404 lines
51 KiB
Python
1404 lines
51 KiB
Python
# mypy: allow-untyped-decorators
|
|
from __future__ import annotations
|
|
|
|
import collections
|
|
import contextlib
|
|
import cProfile
|
|
import dis
|
|
import functools
|
|
import itertools
|
|
import json
|
|
import logging
|
|
import os
|
|
import pstats
|
|
import random
|
|
import subprocess
|
|
import sys
|
|
import threading
|
|
import time
|
|
import traceback
|
|
import typing
|
|
import warnings
|
|
import weakref
|
|
from pathlib import Path
|
|
from types import CodeType, FrameType, FunctionType, ModuleType
|
|
from typing import Any, Callable, Dict, List, Optional, Set, TypeVar, Union
|
|
from typing_extensions import ParamSpec
|
|
from weakref import ReferenceType
|
|
|
|
import torch
|
|
import torch._logging
|
|
from torch._C._dynamo.guards import GlobalStateGuard
|
|
from torch._dynamo.distributed import get_compile_pg
|
|
from torch._dynamo.utils import CompileTimeInstructionCounter, get_metrics_context
|
|
from torch._guards import compile_context, CompileContext, CompileId, tracing
|
|
from torch._logging import structured
|
|
from torch._utils_internal import (
|
|
compile_time_strobelight_meta,
|
|
justknobs_check,
|
|
maybe_upload_prof_stats_to_manifold,
|
|
signpost_event,
|
|
)
|
|
from torch.fx._lazy_graph_module import _use_lazy_graph_module
|
|
from torch.fx.experimental.symbolic_shapes import (
|
|
ConstraintViolationError,
|
|
GuardOnDataDependentSymNode,
|
|
)
|
|
from torch.fx.graph_module import _forward_from_src as original_forward_from_src
|
|
from torch.monitor import _WaitCounter
|
|
from torch.nn.parallel.distributed import DistributedDataParallel
|
|
from torch.utils._python_dispatch import (
|
|
_disable_current_modes,
|
|
is_in_torch_dispatch_mode,
|
|
)
|
|
from torch.utils._traceback import CapturedTraceback, format_traceback_short
|
|
|
|
from . import config, exc, trace_rules
|
|
from .bytecode_analysis import remove_dead_code, remove_pointless_jumps
|
|
from .bytecode_transformation import (
|
|
check_inst_exn_tab_entries_valid,
|
|
Instruction,
|
|
is_generator,
|
|
propagate_inst_exn_table_entries,
|
|
transform_code_object,
|
|
)
|
|
from .cache_size import (
|
|
CacheSizeRelevantForFrame,
|
|
compute_cache_size,
|
|
exceeds_cache_size_limit,
|
|
is_recompilation,
|
|
)
|
|
from .eval_frame import (
|
|
always_optimize_code_objects,
|
|
dynamo_tls,
|
|
skip_code,
|
|
TorchPatcher,
|
|
)
|
|
from .exc import (
|
|
augment_exc_message,
|
|
BackendCompilerFailed,
|
|
CacheLimitExceeded,
|
|
FailOnCacheLimitHit,
|
|
format_error_msg,
|
|
InternalTorchDynamoError,
|
|
SkipCodeRecursiveException,
|
|
TorchRuntimeError,
|
|
UncapturedHigherOrderOpError,
|
|
unimplemented,
|
|
Unsupported,
|
|
)
|
|
from .guards import (
|
|
CheckFunctionManager,
|
|
get_and_maybe_log_recompilation_reason,
|
|
GuardedCode,
|
|
)
|
|
from .hooks import Hooks
|
|
from .pgo import put_code_state
|
|
from .replay_record import ExecutionRecord
|
|
from .resume_execution import TORCH_DYNAMO_RESUME_IN_PREFIX
|
|
from .symbolic_convert import (
|
|
DistributedState,
|
|
InstructionTranslator,
|
|
LocalState,
|
|
SpeculationLog,
|
|
)
|
|
from .trace_rules import is_numpy
|
|
from .utils import (
|
|
CleanupManager,
|
|
counters,
|
|
dynamo_timed,
|
|
format_bytecode,
|
|
gen_record_file_name,
|
|
get_chromium_event_logger,
|
|
increment_frame,
|
|
is_namedtuple,
|
|
istype,
|
|
LazyString,
|
|
orig_code_map,
|
|
reset_graph_break_dup_checker,
|
|
setup_compile_debug,
|
|
to_int_us,
|
|
troubleshooting_url,
|
|
write_record_to_file,
|
|
)
|
|
from .variables.torch_function import torch_function_mode_stack_state_mgr
|
|
|
|
|
|
np: Optional[ModuleType]
|
|
try:
|
|
import numpy as np
|
|
except ModuleNotFoundError:
|
|
np = None
|
|
|
|
|
|
if typing.TYPE_CHECKING:
|
|
from .backends.registry import CompilerFn
|
|
from .repro.after_dynamo import WrapBackendDebug
|
|
from .types import BytecodeHook, CacheEntry
|
|
from .variables.builder import FrameStateSizeEntry
|
|
|
|
|
|
log = logging.getLogger(__name__)
|
|
bytecode_log = torch._logging.getArtifactLogger(__name__, "bytecode")
|
|
graph_break_log = torch._logging.getArtifactLogger(__name__, "graph_breaks")
|
|
|
|
|
|
compile_lock = threading.RLock()
|
|
|
|
_T = TypeVar("_T")
|
|
_P = ParamSpec("_P")
|
|
|
|
|
|
class TODO_UNKNOWN:
|
|
pass
|
|
|
|
|
|
class Tracker:
|
|
def __init__(self) -> None:
|
|
self.seen: List[ReferenceType[CodeType]] = []
|
|
self.seen_ids: Set[int] = set()
|
|
|
|
def add(self, strong_obj: CodeType) -> None:
|
|
idx = id(strong_obj)
|
|
if idx not in self.seen_ids:
|
|
obj = weakref.ref(strong_obj, lambda _: self.seen_ids.remove(idx))
|
|
self.seen.append(obj)
|
|
self.seen_ids.add(idx)
|
|
|
|
def __contains__(self, item: CodeType) -> bool:
|
|
return id(item) in self.seen_ids
|
|
|
|
def clear(self) -> None:
|
|
self.seen.clear()
|
|
self.seen_ids.clear()
|
|
|
|
|
|
input_codes = Tracker()
|
|
output_codes = Tracker()
|
|
|
|
initial_global_state: Optional[GlobalStateGuard] = None
|
|
|
|
|
|
@functools.wraps(original_forward_from_src)
|
|
def fx_forward_from_src_skip_result(
|
|
src: str, globals: Dict[str, Any], co_fields: Optional[Dict[str, str]] = None
|
|
) -> FunctionType:
|
|
# we monkey patch FX to prevent infinite loop of trying to convert
|
|
# our generated code
|
|
result = original_forward_from_src(src, globals, co_fields)
|
|
skip_code(result.__code__)
|
|
return result
|
|
|
|
|
|
def preserve_global_state(fn: Callable[_P, _T]) -> Callable[_P, _T]:
|
|
"""
|
|
Context manager to:
|
|
1) Save/restore torch.is_grad_enabled() state
|
|
2) Save/restore python random state
|
|
3) Save/restore torch random state
|
|
4) Monkey patch torch.fx.graph_module._forward_from_src
|
|
"""
|
|
|
|
@functools.wraps(fn)
|
|
def _fn(*args: _P.args, **kwargs: _P.kwargs) -> _T:
|
|
guards = GlobalStateGuard()
|
|
prior_grad_mode = torch.is_grad_enabled()
|
|
# Just in case we get left in a bad dispatch state we want to restore
|
|
# it. This can happen because the dispatch bits aren't a true
|
|
# stack/counter - so we can't just increment/decrement them as we enter
|
|
# and leave.
|
|
with torch._C._PreserveDispatchKeyGuard():
|
|
prior_inference_mode = torch.is_inference_mode_enabled()
|
|
prior_deterministic = torch.are_deterministic_algorithms_enabled()
|
|
prior_warn_only = torch.is_deterministic_algorithms_warn_only_enabled()
|
|
py_rng_state = random.getstate()
|
|
torch_rng_state = torch.random.get_rng_state()
|
|
cuda_rng_state = None
|
|
if torch.cuda.is_available():
|
|
cuda_rng_state = torch.cuda.get_rng_state()
|
|
allow_tf32 = torch._C._get_cublas_allow_tf32()
|
|
prior_fwd_from_src = torch.fx.graph_module._forward_from_src
|
|
torch.fx.graph_module._forward_from_src = fx_forward_from_src_skip_result
|
|
cleanup = setup_compile_debug()
|
|
exit_stack = contextlib.ExitStack()
|
|
exit_stack.enter_context(
|
|
torch.fx._symbolic_trace._maybe_revert_all_patches()
|
|
)
|
|
exit_stack.enter_context(torch_function_mode_stack_state_mgr)
|
|
try:
|
|
return fn(*args, **kwargs)
|
|
finally:
|
|
cleanup.close()
|
|
assert (
|
|
torch._C._len_torch_function_stack() == 0
|
|
), "Torch function mode stack state changed while dynamo tracing, please report a bug"
|
|
exit_stack.close()
|
|
torch._C._set_grad_enabled(prior_grad_mode)
|
|
torch.autograd.grad_mode._enter_inference_mode(prior_inference_mode)
|
|
torch.use_deterministic_algorithms(
|
|
prior_deterministic, warn_only=prior_warn_only
|
|
)
|
|
random.setstate(py_rng_state)
|
|
torch.random.set_rng_state(torch_rng_state)
|
|
if cuda_rng_state is not None:
|
|
torch.cuda.set_rng_state(cuda_rng_state)
|
|
torch._C._set_cublas_allow_tf32(allow_tf32)
|
|
torch.fx.graph_module._forward_from_src = prior_fwd_from_src
|
|
assert (
|
|
guards.check()
|
|
), f"Global {guards.reason()}state changed while dynamo tracing, please report a bug"
|
|
|
|
_fn._torchdynamo_orig_callable = fn # type: ignore[attr-defined]
|
|
return _fn
|
|
|
|
|
|
@TorchPatcher.suppress_torch_distributed_warnings
|
|
def has_tensor_in_frame(frame: FrameType) -> bool:
|
|
"""Check if the frame has torch.* related bits"""
|
|
# Check if the function was decorated using torch._dynamo.optimize
|
|
if frame.f_code in always_optimize_code_objects:
|
|
return True
|
|
|
|
# Check if there is global import of torch.*
|
|
for co_name in frame.f_code.co_names:
|
|
if co_name in frame.f_globals:
|
|
obj = frame.f_globals[co_name]
|
|
if isinstance(obj, ModuleType) and (
|
|
obj.__name__.startswith("torch.") or obj is torch
|
|
):
|
|
return True
|
|
# ... or a global import of numpy.*
|
|
if np and config.trace_numpy and (obj is np or is_numpy(obj)):
|
|
return True
|
|
|
|
seen_ids: Dict[int, bool] = {}
|
|
|
|
def has_tensor(obj: object) -> bool:
|
|
"""Recursively check if the obj has a tensor"""
|
|
obj_id = id(obj)
|
|
if obj_id in seen_ids:
|
|
return seen_ids[obj_id]
|
|
seen_ids[obj_id] = False
|
|
|
|
if isinstance(obj, (torch.Tensor, torch.nn.Module)) or (
|
|
istype(obj, type) and issubclass(obj, torch.nn.Module)
|
|
):
|
|
seen_ids[obj_id] = True
|
|
return seen_ids[obj_id]
|
|
elif (
|
|
config.trace_numpy
|
|
and np
|
|
and (istype(obj, np.ndarray) or isinstance(obj, np.generic))
|
|
):
|
|
seen_ids[obj_id] = True
|
|
return seen_ids[obj_id]
|
|
elif istype(obj, (list, tuple)):
|
|
seen_ids[obj_id] = any(has_tensor(v) for v in obj)
|
|
return seen_ids[obj_id]
|
|
elif istype(obj, dict):
|
|
# Some packages like pytest can be updated during runtime. So, make a
|
|
# copy of values to avoid issues like "RuntimeError: dictionary
|
|
# changed size during iteration"
|
|
values = list(obj.values())
|
|
seen_ids[obj_id] = any(has_tensor(v) for v in values)
|
|
return seen_ids[obj_id]
|
|
elif istype(obj, (str, int, float, type(None), bool)):
|
|
seen_ids[obj_id] = False
|
|
return seen_ids[obj_id]
|
|
elif is_namedtuple(obj) and hasattr(obj, "_fields"):
|
|
seen_ids[obj_id] = any(has_tensor(getattr(obj, v)) for v in obj._fields)
|
|
return seen_ids[obj_id]
|
|
else:
|
|
# if config.debug:
|
|
# print(
|
|
# f"Assuming that object of type {type(obj)} does not have a tensor"
|
|
# )
|
|
return False
|
|
|
|
# Check if the passed arguments are of type Tensor
|
|
for value in frame.f_locals.values():
|
|
if has_tensor(value):
|
|
return True
|
|
|
|
log.debug(
|
|
"skipping because no torch.* %s \
|
|
%s %s",
|
|
frame.f_code.co_name,
|
|
frame.f_code.co_filename,
|
|
frame.f_code.co_firstlineno,
|
|
)
|
|
|
|
return False
|
|
|
|
|
|
def exception_handler(
|
|
e: Exception,
|
|
code: CodeType,
|
|
frame: Optional[FrameType] = None,
|
|
export: bool = False,
|
|
) -> None:
|
|
record_filename = None
|
|
if hasattr(e, "exec_record"):
|
|
record_filename = gen_record_file_name(e, code)
|
|
write_record_to_file(record_filename, e.exec_record)
|
|
e.record_filename = record_filename # type: ignore[attr-defined]
|
|
|
|
augment_exc_message(e, export=export)
|
|
|
|
|
|
FRAME_COUNTER = 0
|
|
FRAME_COMPILE_COUNTER: typing.Counter[
|
|
Union[int, FrameStateSizeEntry]
|
|
] = collections.Counter()
|
|
|
|
|
|
def maybe_cprofile(func: Callable[_P, _T]) -> Callable[_P, _T]:
|
|
if config.cprofile:
|
|
return cprofile_wrapper(func)
|
|
return func
|
|
|
|
|
|
def cprofile_wrapper(func: Callable[_P, _T]) -> Callable[_P, _T]:
|
|
@functools.wraps(func)
|
|
def profile_wrapper(*args: _P.args, **kwargs: _P.kwargs) -> _T:
|
|
trace_id = CompileContext.current_trace_id()
|
|
assert trace_id, "Trace id is None"
|
|
profile_path = Path(
|
|
f"/tmp/{func.__name__}_{str(trace_id).replace('/', '_')}.profile"
|
|
)
|
|
prof = cProfile.Profile()
|
|
prof.enable()
|
|
start_ts = time.time()
|
|
retval = prof.runcall(func, *args, **kwargs)
|
|
profile_latency = time.time() - start_ts
|
|
prof.disable()
|
|
log.warning(
|
|
"### Cprofile for %s trace id [%s] took %.3f seconds ###",
|
|
func.__name__,
|
|
trace_id,
|
|
profile_latency,
|
|
)
|
|
ps = pstats.Stats(prof)
|
|
try:
|
|
prof.dump_stats(profile_path)
|
|
except PermissionError:
|
|
log.exception("Cannot write to %s", profile_path)
|
|
log.warning("Raw profile at %s", profile_path)
|
|
svg_path = profile_path.with_suffix(".svg")
|
|
try:
|
|
gprof2dot_process = subprocess.Popen(
|
|
[
|
|
"gprof2dot",
|
|
"-f",
|
|
"pstats",
|
|
"--node-label=total-time-percentage",
|
|
"--node-label=self-time-percentage",
|
|
"--node-label=total-time",
|
|
str(profile_path),
|
|
],
|
|
stdout=subprocess.PIPE,
|
|
)
|
|
subprocess.check_call(
|
|
["dot", "-Tsvg", "-o", str(svg_path)],
|
|
stdin=gprof2dot_process.stdout,
|
|
)
|
|
log.warning("Generated SVG from profile at %s", svg_path)
|
|
except FileNotFoundError:
|
|
log.warning(
|
|
"Failed to generate SVG from profile -- dumping stats instead."
|
|
"Try installing gprof2dot and dot for a better visualization"
|
|
)
|
|
ps.sort_stats(pstats.SortKey.TIME).print_stats(20)
|
|
ps.sort_stats(pstats.SortKey.CUMULATIVE).print_stats(20)
|
|
|
|
if manifold_link := maybe_upload_prof_stats_to_manifold(
|
|
str(profile_path)
|
|
): # fb-only
|
|
torch._logging.trace_structured(
|
|
"link",
|
|
lambda: {"name": "cprofile_manifold_url", "url": manifold_link},
|
|
)
|
|
return retval
|
|
|
|
return profile_wrapper
|
|
|
|
|
|
class ConvertFrameAssert:
|
|
def __init__(
|
|
self,
|
|
compiler_fn: CompilerFn,
|
|
one_graph: bool = True,
|
|
export: bool = False,
|
|
export_constraints: Optional[typing.Never] = None,
|
|
) -> None:
|
|
# assert export_constraints is None
|
|
reset_graph_break_dup_checker()
|
|
self._torchdynamo_orig_callable = compiler_fn
|
|
self._one_graph = one_graph
|
|
self._export = export
|
|
self._export_constraints = export_constraints
|
|
|
|
@property
|
|
def _clone_with_backend(self) -> Callable[[CompilerFn], ConvertFrameAssert]:
|
|
return lambda backend: convert_frame_assert(
|
|
backend, self._one_graph, self._export, self._export_constraints
|
|
)
|
|
|
|
def __call__(
|
|
self,
|
|
frame: FrameType,
|
|
cache_entry: Optional[CacheEntry],
|
|
hooks: Hooks,
|
|
frame_state: Dict[str, Union[int, FrameStateSizeEntry]],
|
|
*,
|
|
skip: int = 0,
|
|
) -> Optional[GuardedCode]:
|
|
increment_frame()
|
|
|
|
code = frame.f_code
|
|
|
|
cache_size = compute_cache_size(frame, cache_entry)
|
|
input_codes.add(code)
|
|
if code in output_codes:
|
|
return None
|
|
if (
|
|
os.environ.get("TORCHDYNAMO_DEBUG_FUNCTION")
|
|
and os.environ.get("TORCHDYNAMO_DEBUG_FUNCTION") != code.co_name
|
|
):
|
|
return None
|
|
if code.co_name == "<genexpr>" and code.co_filename.endswith(
|
|
(
|
|
"transformers/file_utils.py",
|
|
"transformers/utils/generic.py",
|
|
"diffusers/utils/outputs.py",
|
|
)
|
|
):
|
|
# not needed, but cleans up torchbench error stats
|
|
return None
|
|
if code.co_name == "__setattr__":
|
|
# setattr could be tricky to handle generally,
|
|
# but also not likely useful to compile- skip the whole frame
|
|
return None
|
|
if code.co_name == "__init__" and code.co_filename.startswith(
|
|
os.path.dirname(torch.optim.__file__)
|
|
):
|
|
# optimizer support is still incomplete see
|
|
# test_state_dict in test/dynamo/test_optimizers.py
|
|
return None
|
|
|
|
# Check if the frame is generated by an exec builtin call
|
|
# TODO - Running exec generated frame seems propagates f_globals to the
|
|
# next frames.
|
|
if code.co_name == "<module>" and code.co_filename == "<string>":
|
|
return None
|
|
|
|
if (
|
|
code.co_name == "<lambda>"
|
|
and code.co_filename == "<string>"
|
|
and not bool(frame.f_builtins)
|
|
):
|
|
# namedtuple subclass constructor. Empty builtins cause issue with
|
|
# len keyword in LIST_LEN guard.
|
|
return None
|
|
|
|
if is_generator(code):
|
|
unimplemented("generator")
|
|
|
|
if not has_tensor_in_frame(frame):
|
|
return None
|
|
|
|
global initial_global_state
|
|
initial_global_state = GlobalStateGuard()
|
|
|
|
global FRAME_COUNTER
|
|
if "_id" not in frame_state:
|
|
frame_state["_id"] = FRAME_COUNTER
|
|
FRAME_COUNTER += 1
|
|
frame_id = frame_state["_id"]
|
|
assert isinstance(frame_id, int)
|
|
|
|
frame_compile_id = FRAME_COMPILE_COUNTER[frame_id]
|
|
FRAME_COMPILE_COUNTER[frame_id] += 1
|
|
|
|
compile_id = CompileId(frame_id, frame_compile_id)
|
|
|
|
signpost_event(
|
|
"dynamo",
|
|
"_convert_frame_assert._compile",
|
|
{
|
|
"co_name": code.co_name,
|
|
"frame_id": frame_id,
|
|
"compile_id": str(compile_id),
|
|
"co_filename": code.co_filename,
|
|
"co_firstlineno": code.co_firstlineno,
|
|
"cache_size": cache_size.num_cache_entries_with_same_id_matched_objs,
|
|
"accumulated_cache_size": cache_size.num_cache_entries,
|
|
},
|
|
)
|
|
|
|
# Record traced frames, skipping Dynamo generated ones.
|
|
if not code.co_name.startswith(TORCH_DYNAMO_RESUME_IN_PREFIX):
|
|
info = f"{code.co_name} {code.co_filename}:{code.co_firstlineno}"
|
|
dynamo_tls.traced_frame_infos.append(info)
|
|
|
|
with compile_context(CompileContext(compile_id)):
|
|
return _compile(
|
|
frame.f_code,
|
|
frame.f_globals,
|
|
frame.f_locals,
|
|
frame.f_builtins,
|
|
self._torchdynamo_orig_callable,
|
|
self._one_graph,
|
|
self._export,
|
|
self._export_constraints,
|
|
hooks,
|
|
cache_entry,
|
|
cache_size,
|
|
frame,
|
|
frame_state=frame_state,
|
|
compile_id=compile_id,
|
|
skip=skip + 1,
|
|
)
|
|
|
|
|
|
def convert_frame_assert(
|
|
compiler_fn: CompilerFn,
|
|
one_graph: bool = True,
|
|
export: bool = False,
|
|
export_constraints: Optional[typing.Never] = None,
|
|
) -> ConvertFrameAssert:
|
|
"""Fully convert a frame into an FX graph"""
|
|
return ConvertFrameAssert(compiler_fn, one_graph, export, export_constraints)
|
|
|
|
|
|
from collections import OrderedDict
|
|
|
|
from torch.utils.hooks import RemovableHandle
|
|
|
|
|
|
if typing.TYPE_CHECKING:
|
|
from .output_graph import OutputGraph
|
|
|
|
# we have to use `OrderedDict` to make `RemovableHandle` work.
|
|
_bytecode_hooks: Dict[int, BytecodeHook] = OrderedDict()
|
|
|
|
|
|
def register_bytecode_hook(hook: BytecodeHook) -> RemovableHandle:
|
|
"""Register hooks for bytecode generated by Dynamo. The hook can do some
|
|
logging, as well as return a new code object to be used. Please refer
|
|
to `BytecodeHook` for the hook signature.
|
|
"""
|
|
handle = RemovableHandle(_bytecode_hooks)
|
|
_bytecode_hooks[handle.id] = hook
|
|
return handle
|
|
|
|
|
|
def _compile(
|
|
code: CodeType,
|
|
globals: Dict[str, object],
|
|
locals: Dict[str, object],
|
|
builtins: Dict[str, object],
|
|
compiler_fn: CompilerFn,
|
|
one_graph: bool,
|
|
export: bool,
|
|
export_constraints: Optional[typing.Never],
|
|
hooks: Hooks,
|
|
cache_entry: Optional[CacheEntry],
|
|
cache_size: CacheSizeRelevantForFrame,
|
|
frame: Optional[FrameType] = None,
|
|
frame_state: Optional[Dict[str, Union[int, FrameStateSizeEntry]]] = None,
|
|
*,
|
|
compile_id: CompileId,
|
|
skip: int = 0,
|
|
) -> Optional[GuardedCode]:
|
|
from torch.fx.experimental.validator import (
|
|
bisect,
|
|
BisectValidationException,
|
|
translation_validation_enabled,
|
|
ValidationException,
|
|
)
|
|
|
|
# Only nonlocal defs here please!
|
|
# Time spent compiling this frame before restarting or failing analysis
|
|
dynamo_time_before_restart: float = 0.0
|
|
output: Optional[OutputGraph] = None
|
|
tracer: Optional[InstructionTranslator] = None
|
|
|
|
tf_mode_stack: List[
|
|
torch.overrides.TorchFunctionMode
|
|
] = torch.overrides._get_current_function_mode_stack()
|
|
|
|
@preserve_global_state
|
|
def transform(
|
|
instructions: List[Instruction], code_options: Dict[str, object]
|
|
) -> None:
|
|
nonlocal output
|
|
nonlocal tracer
|
|
speculation_log.restart()
|
|
tracer = InstructionTranslator(
|
|
instructions,
|
|
code,
|
|
locals,
|
|
globals,
|
|
builtins,
|
|
tf_mode_stack,
|
|
code_options,
|
|
compiler_fn,
|
|
one_graph,
|
|
export,
|
|
export_constraints,
|
|
mutated_closure_cell_ids,
|
|
frame_state=frame_state,
|
|
speculation_log=speculation_log,
|
|
distributed_state=distributed_state,
|
|
)
|
|
|
|
try:
|
|
with tracing(tracer.output.tracing_context), tracer.set_current_tx():
|
|
tracer.run()
|
|
except exc.UnspecializeRestartAnalysis:
|
|
speculation_log.clear()
|
|
raise
|
|
except (exc.SpeculationRestartAnalysis, exc.SkipFrame):
|
|
raise
|
|
except Exception:
|
|
if translation_validation_enabled():
|
|
bisect(tracer.output.shape_env)
|
|
raise
|
|
finally:
|
|
tracer.output.call_cleanup_hooks()
|
|
|
|
output = tracer.output
|
|
assert output is not None
|
|
assert output.output_instructions
|
|
instructions[:] = output.output_instructions
|
|
code_options.update(output.code_options)
|
|
|
|
# The config.dead_code_elimination flag is deprecated
|
|
# See https://github.com/pytorch/pytorch/issues/136862 for more information
|
|
if not config.dead_code_elimination:
|
|
warnings.warn(
|
|
"The config.dead_code_elimination flag is deprecated, it's now always true."
|
|
)
|
|
|
|
propagate_inst_exn_table_entries(instructions)
|
|
check_inst_exn_tab_entries_valid(instructions)
|
|
instructions[:] = remove_pointless_jumps(remove_dead_code(instructions))
|
|
|
|
def compile_inner(
|
|
code: CodeType,
|
|
one_graph: bool,
|
|
hooks: Hooks,
|
|
transform: Callable[[List[Instruction], Dict[str, Any]], Any],
|
|
) -> Optional[GuardedCode]:
|
|
with contextlib.ExitStack() as stack:
|
|
stack.enter_context(
|
|
dynamo_timed(
|
|
"_compile.compile_inner",
|
|
phase_name="entire_frame_compile",
|
|
dynamo_compile_column_us="dynamo_cumulative_compile_time_us",
|
|
)
|
|
)
|
|
stack.enter_context(
|
|
_WaitCounter("pytorch.wait_counter.dynamo_compile").guard()
|
|
)
|
|
stack.enter_context(CompileTimeInstructionCounter.record())
|
|
return _compile_inner(code, one_graph, hooks, transform)
|
|
|
|
return None # dead, but see https://github.com/python/mypy/issues/7577
|
|
|
|
@compile_time_strobelight_meta(phase_name="compile_inner")
|
|
@maybe_cprofile
|
|
def _compile_inner(
|
|
code: CodeType,
|
|
one_graph: bool,
|
|
hooks: Hooks,
|
|
transform: Callable[[List[Instruction], Dict[str, Any]], Any],
|
|
) -> Optional[GuardedCode]:
|
|
nonlocal dynamo_time_before_restart
|
|
last_attempt_start_time = start_time = time.time()
|
|
|
|
def log_bytecode(
|
|
prefix: str, name: str, filename: str, line_no: int, code: CodeType
|
|
) -> None:
|
|
if bytecode_log.isEnabledFor(logging.DEBUG):
|
|
bytecode_log.debug(
|
|
format_bytecode(prefix, name, filename, line_no, code)
|
|
)
|
|
|
|
log_bytecode(
|
|
"ORIGINAL BYTECODE",
|
|
code.co_name,
|
|
code.co_filename,
|
|
code.co_firstlineno,
|
|
code,
|
|
)
|
|
|
|
out_code = None
|
|
for attempt in itertools.count():
|
|
CompileContext.get().attempt = attempt
|
|
try:
|
|
out_code = transform_code_object(code, transform)
|
|
break
|
|
except exc.RestartAnalysis as e:
|
|
log.info(
|
|
"Restarting analysis due to %s",
|
|
LazyString(format_traceback_short, e.__traceback__),
|
|
)
|
|
# If restart reason is None just log the type of the exception
|
|
restart_reasons.add(e.restart_reason or str(type(e)))
|
|
# We now have a new "last attempt", reset the clock
|
|
last_attempt_start_time = time.time()
|
|
if attempt > 100:
|
|
unimplemented("100+ RestartAnalysis() calls")
|
|
except exc.SkipFrame as e:
|
|
log.debug(
|
|
"Skipping frame %s %s \
|
|
%s %s",
|
|
e,
|
|
code.co_name,
|
|
code.co_filename,
|
|
code.co_firstlineno,
|
|
)
|
|
if one_graph:
|
|
log.debug("No graph captured with one_graph=True")
|
|
return None
|
|
|
|
assert (
|
|
distributed_state is None or distributed_state.all_states is not None
|
|
), "compiler collective wasn't run before compilation completed"
|
|
|
|
assert out_code is not None
|
|
log_bytecode(
|
|
"MODIFIED BYTECODE",
|
|
code.co_name,
|
|
code.co_filename,
|
|
code.co_firstlineno,
|
|
out_code,
|
|
)
|
|
|
|
for hook in _bytecode_hooks.values():
|
|
hook_output = hook(code, out_code)
|
|
if hook_output is not None:
|
|
out_code = hook_output
|
|
|
|
orig_code_map[out_code] = code
|
|
output_codes.add(out_code)
|
|
dynamo_time_before_restart = last_attempt_start_time - start_time
|
|
assert output is not None
|
|
|
|
# Tests for new code objects.
|
|
# The rationale for these tests can be found in torch/csrc/dynamo/eval_frame.c
|
|
# Only test once the code object is created.
|
|
# They are not tested during runtime.
|
|
|
|
def count_args(code: CodeType) -> int:
|
|
import inspect
|
|
|
|
return (
|
|
code.co_argcount
|
|
+ code.co_kwonlyargcount
|
|
+ bool(code.co_flags & inspect.CO_VARARGS)
|
|
+ bool(code.co_flags & inspect.CO_VARKEYWORDS)
|
|
)
|
|
|
|
assert out_code is not None
|
|
|
|
total_argcount_old = count_args(code)
|
|
total_argcount_new = count_args(out_code)
|
|
msg = "arg mismatch: "
|
|
msg += f"old code object has args {code.co_varnames[:total_argcount_old]}, "
|
|
msg += f"new code object has args {out_code.co_varnames[:total_argcount_new]}"
|
|
assert (
|
|
code.co_varnames[:total_argcount_old]
|
|
== out_code.co_varnames[:total_argcount_new]
|
|
), msg
|
|
|
|
msg = "free var mismatch: "
|
|
msg += f"old code object has free var {code.co_freevars}, "
|
|
msg += f"new code object has free var {out_code.co_freevars}"
|
|
assert code.co_freevars == out_code.co_freevars, msg
|
|
|
|
msg = "cell var mismatch: "
|
|
msg += f"old code object has cell var {code.co_cellvars}, "
|
|
msg += f"new code object has cell var {out_code.co_cellvars}"
|
|
assert code.co_cellvars == out_code.co_cellvars, msg
|
|
|
|
# Skipping Dynamo on a frame without any extracted graph.
|
|
# This does not affect eager functionality. But this is necessary
|
|
# for export for cases where Dynamo-reconstructed bytecode can create
|
|
# new function frames, confusing export in thinking that there
|
|
# are extra graphs now.
|
|
|
|
if output.export and output.is_empty_graph():
|
|
return None
|
|
|
|
assert output.guards is not None
|
|
CleanupManager.instance[out_code] = output.cleanups
|
|
check_fn = CheckFunctionManager(
|
|
output,
|
|
hooks.guard_fail_fn if hooks else None,
|
|
)
|
|
|
|
compile_id_str = str(compile_id) if compile_id is not None else "Unknown"
|
|
annotation_str = "Torch-Compiled Region: " + compile_id_str
|
|
guarded_code = GuardedCode(
|
|
out_code, check_fn.guard_manager, compile_id, annotation_str # type: ignore[arg-type]
|
|
)
|
|
|
|
if not output.is_empty_graph() and hooks.guard_export_fn is not None:
|
|
# We should not run the guard_export_fn when Dynamo does not
|
|
# generate any graph. This can happen in export when TorchDynamo
|
|
# generated bytecode has some reconstruction logic for mutated
|
|
# variables which can trigger TorchDynamo on the children frames but
|
|
# they are benign and do not generate any new graphs.
|
|
hooks.guard_export_fn(output.guards)
|
|
|
|
return guarded_code
|
|
|
|
chromium_event_log = get_chromium_event_logger()
|
|
|
|
chromium_event_log.reset()
|
|
chromium_start_time = time.time_ns()
|
|
chromium_event_log.log_event_start("dynamo", chromium_start_time, {})
|
|
|
|
metrics_context = get_metrics_context()
|
|
with _use_lazy_graph_module(config.use_lazy_graph_module), compile_context(
|
|
CompileContext(compile_id)
|
|
), metrics_context:
|
|
restart_reasons: set[str] = set()
|
|
# This is shared across restarts
|
|
mutated_closure_cell_ids: Set[int] = set()
|
|
speculation_log = SpeculationLog()
|
|
if compile_pg := get_compile_pg():
|
|
distributed_state = DistributedState(compile_pg, LocalState())
|
|
else:
|
|
distributed_state = None
|
|
torch._dynamo.callback_handler.run_start_callbacks()
|
|
|
|
# Check recompilations
|
|
recompile_reasons = None
|
|
if is_recompilation(cache_size) and frame:
|
|
recompile_reasons = get_and_maybe_log_recompilation_reason(
|
|
cache_entry, frame
|
|
)
|
|
|
|
exceeded, limit_type = exceeds_cache_size_limit(cache_size, compile_id)
|
|
if exceeded:
|
|
|
|
def format_func_info(code: CodeType) -> str:
|
|
return f"'{code.co_name}' ({code.co_filename}:{code.co_firstlineno})"
|
|
|
|
def format_guard_failures() -> str:
|
|
if not recompile_reasons:
|
|
return "Unable to find recompilation reasons"
|
|
return recompile_reasons[-1]
|
|
|
|
log.warning(
|
|
"torch._dynamo hit config.%s (%s)\n"
|
|
" function: %s\n"
|
|
" last reason: %s\n"
|
|
'To log all recompilation reasons, use TORCH_LOGS="recompiles".\n'
|
|
"To diagnose recompilation issues, see %s.",
|
|
limit_type,
|
|
getattr(config, limit_type),
|
|
format_func_info(code),
|
|
format_guard_failures(),
|
|
troubleshooting_url,
|
|
)
|
|
if config.fail_on_cache_limit_hit:
|
|
raise FailOnCacheLimitHit(
|
|
f"{limit_type} reached, because fail_on_cache_limit_hit = True this is a HARD failure"
|
|
)
|
|
elif config.skip_code_recursive_on_cache_limit_hit and justknobs_check(
|
|
"pytorch/compiler:skip_code_recursive_on_cache_limit_hit"
|
|
):
|
|
raise CacheLimitExceeded(f"{limit_type} reached")
|
|
else:
|
|
# do not recursively skip frames
|
|
unimplemented(f"{limit_type} reached")
|
|
|
|
log.debug(
|
|
"torchdynamo start compiling %s %s:%s, stack (elided %s frames):\n%s",
|
|
code.co_name,
|
|
code.co_filename,
|
|
code.co_firstlineno,
|
|
skip + 2,
|
|
# -2: omit current frame, omit contextlib decorator
|
|
"".join(CapturedTraceback.extract(skip=2 + skip).format()),
|
|
)
|
|
# -4: -2 as above, plus trace_structured frames
|
|
#
|
|
# NB: the frame looks like this:
|
|
#
|
|
# # handled by skip argument
|
|
# torch/_dynamo/convert_frame.py:1069 in catch_errors
|
|
# torch/_dynamo/convert_frame.py:910 in _convert_frame
|
|
# torch/_dynamo/convert_frame.py:464 in _convert_frame_assert
|
|
# torch/_utils_internal.py:70 in wrapper_function
|
|
#
|
|
# # 2 current frame and context lib
|
|
# env/lib/python3.10/contextlib.py:79 in inner
|
|
# torch/_dynamo/convert_frame.py:776 in _compile
|
|
#
|
|
# # 2 extra here
|
|
# torch/_logging/_internal.py:1064 in trace_structured
|
|
# torch/_dynamo/convert_frame.py:780 in <lambda>
|
|
convert_frame_intern = structured.intern_string(__file__)
|
|
# Initialize the ChromiumEventLogger on start
|
|
torch._logging.trace_structured(
|
|
"dynamo_start",
|
|
lambda: {
|
|
"stack": list(
|
|
itertools.takewhile(
|
|
lambda f: f["filename"] != convert_frame_intern,
|
|
structured.from_traceback(
|
|
CapturedTraceback.extract(skip=4 + skip).summary()
|
|
),
|
|
)
|
|
)
|
|
+ [
|
|
{
|
|
"line": code.co_firstlineno,
|
|
"name": code.co_name,
|
|
"filename": structured.intern_string(code.co_filename),
|
|
}
|
|
]
|
|
},
|
|
)
|
|
start_time_ns = time.time_ns()
|
|
fail_type: Optional[str] = None
|
|
fail_reason: Optional[str] = None
|
|
fail_user_frame_filename: Optional[str] = None
|
|
fail_user_frame_lineno: Optional[int] = None
|
|
torch._dynamo.utils.ReinplaceCounters.clear()
|
|
guarded_code = None
|
|
try:
|
|
guarded_code = compile_inner(code, one_graph, hooks, transform)
|
|
|
|
# NB: We only put_code_state in success case. Success case here
|
|
# does include graph breaks; specifically, if a graph break still
|
|
# resulted in a partially compiled graph, we WILL return here. An
|
|
# Unsupported exception will only bubble to the top level if we
|
|
# are unable to compile the frame at all. In this case, there's
|
|
# no point in uploading the code state, because we will always
|
|
# fail exactly the same way even without the update. (It's useful
|
|
# to upload for graph break though, because this can prevent
|
|
# extra graph break compilations.)
|
|
put_code_state()
|
|
|
|
return guarded_code
|
|
except Exception as e:
|
|
# TODO(masnesral): Populating the exception info should be automatic
|
|
fail_type = type(e).__qualname__
|
|
fail_reason = str(e)
|
|
# NB: e's msg is mutated here to add user stack, but we DON'T want
|
|
# that stack in the Scuba logged fail_reason
|
|
exception_handler(e, code, frame, export=export)
|
|
# NB: this is the post-mutation exception
|
|
torch._logging.trace_structured(
|
|
"artifact",
|
|
metadata_fn=lambda: {
|
|
"name": "dynamo_error",
|
|
"encoding": "string",
|
|
},
|
|
payload_fn=lambda: traceback.format_exc(),
|
|
)
|
|
fail_user_frame_filename, fail_user_frame_lineno = exc.get_exc_message(
|
|
e, compile_id
|
|
)
|
|
if isinstance(
|
|
e,
|
|
(
|
|
Unsupported,
|
|
TorchRuntimeError,
|
|
BackendCompilerFailed,
|
|
AssertionError,
|
|
ConstraintViolationError,
|
|
GuardOnDataDependentSymNode,
|
|
ValidationException,
|
|
UncapturedHigherOrderOpError,
|
|
BisectValidationException,
|
|
),
|
|
):
|
|
raise
|
|
else:
|
|
# Rewrap for clarity
|
|
raise InternalTorchDynamoError(
|
|
f"{type(e).__qualname__}: {str(e)}"
|
|
).with_traceback(e.__traceback__) from None
|
|
finally:
|
|
# === WARNING WARNING WARNING ===
|
|
# If you commit a bug here, it will suppress writing to
|
|
# dynamo_compile table, and we will not have telemetry.
|
|
# Be extra careful when making changes here!
|
|
#
|
|
# TODO to masnesral: feel free to delete these comments
|
|
# to resolve any merge conflict you have
|
|
|
|
if tracer:
|
|
tracer.output.local_scope = {}
|
|
|
|
end_time_ns = time.time_ns()
|
|
duration_ns = end_time_ns - start_time_ns
|
|
|
|
from .utils import curr_frame
|
|
|
|
frame_key = str(curr_frame)
|
|
if fail_reason is None and output is not None:
|
|
guard_count = len(output.guards)
|
|
shape_env_guard_count = len(output.shape_env.guards)
|
|
graph_op_count = output.count_calls()
|
|
graph_node_count = len(output.graph.nodes)
|
|
graph_input_count = len(output.placeholders)
|
|
non_compliant_ops = {op.__qualname__ for op in output.non_compliant_ops}
|
|
compliant_custom_ops = {
|
|
op.__qualname__ for op in output.compliant_custom_ops
|
|
}
|
|
torch._dynamo.utils.ReinplaceCounters.log()
|
|
else:
|
|
guard_count = None
|
|
shape_env_guard_count = None
|
|
graph_op_count = None
|
|
graph_node_count = None
|
|
graph_input_count = None
|
|
non_compliant_ops = set({})
|
|
compliant_custom_ops = set({})
|
|
restart_reasons = set()
|
|
# If compilation failed, the entire time is wasted
|
|
dynamo_time_before_restart = duration_ns / 1e9
|
|
|
|
structured_logging_overhead_s = (
|
|
torch._logging.get_structured_logging_overhead()
|
|
)
|
|
|
|
def clean_for_json(d: Dict[str, Any]) -> Dict[str, Any]:
|
|
blocklist = {
|
|
"TYPE_CHECKING",
|
|
"log_file_name",
|
|
"verbose",
|
|
"repro_after",
|
|
"repro_level",
|
|
"repro_forward_only",
|
|
"repro_tolerance",
|
|
"repro_ignore_non_fp",
|
|
"same_two_models_use_fp64",
|
|
"base_dir",
|
|
"debug_dir_root",
|
|
"_save_config_ignore",
|
|
"log_compilation_metrics",
|
|
"inject_BUILD_SET_unimplemented_TESTING_ONLY",
|
|
"_autograd_backward_strict_mode_banned_ops",
|
|
"reorderable_logging_functions",
|
|
"traceable_tensor_subclasses",
|
|
"_custom_ops_profile",
|
|
}
|
|
|
|
return {
|
|
key: list(value) if isinstance(value, set) else value
|
|
for key, value in d.items()
|
|
if key not in blocklist
|
|
}
|
|
|
|
config_dict = clean_for_json(config.get_config_copy())
|
|
metrics = {
|
|
"compile_id": str(compile_id),
|
|
"frame_key": frame_key,
|
|
"co_name": code.co_name,
|
|
"co_filename": code.co_filename,
|
|
"co_firstlineno": code.co_firstlineno,
|
|
"cache_size": cache_size.num_cache_entries_with_same_id_matched_objs,
|
|
"accumulated_cache_size": cache_size.num_cache_entries,
|
|
"guard_count": guard_count,
|
|
"shape_env_guard_count": shape_env_guard_count,
|
|
"graph_op_count": graph_op_count,
|
|
"graph_node_count": graph_node_count,
|
|
"graph_input_count": graph_input_count,
|
|
# TODO(masnesral): start_time and end_time shouldn't need to be
|
|
# populated manually.
|
|
"start_time": start_time_ns / 1e9,
|
|
"fail_type": fail_type,
|
|
"fail_reason": fail_reason,
|
|
"fail_user_frame_filename": fail_user_frame_filename,
|
|
"fail_user_frame_lineno": fail_user_frame_lineno,
|
|
"non_compliant_ops": non_compliant_ops,
|
|
"compliant_custom_ops": compliant_custom_ops,
|
|
"restart_reasons": restart_reasons,
|
|
"dynamo_time_before_restart_s": dynamo_time_before_restart,
|
|
"has_guarded_code": guarded_code is not None,
|
|
"structured_logging_overhead_s": structured_logging_overhead_s,
|
|
"config_suppress_errors": config.suppress_errors,
|
|
"config_inline_inbuilt_nn_modules": config.inline_inbuilt_nn_modules,
|
|
"specialize_float": config.specialize_float,
|
|
"dynamo_config": json.dumps(config_dict),
|
|
"is_forward": True,
|
|
"start_time_us": start_time_ns // 1000,
|
|
"end_time_us": end_time_ns // 1000,
|
|
"duration_us": duration_ns // 1000,
|
|
"dynamo_compile_time_before_restart_us": to_int_us(
|
|
dynamo_time_before_restart
|
|
),
|
|
"structured_logging_overhead_us": to_int_us(
|
|
structured_logging_overhead_s
|
|
),
|
|
}
|
|
metrics_context.update_outer(metrics)
|
|
torch._dynamo.callback_handler.run_end_callbacks()
|
|
# === END WARNING WARNING WARNING ===
|
|
|
|
chromium_event_log.log_event_end(
|
|
"dynamo", time.time_ns(), {}, chromium_start_time, True
|
|
)
|
|
|
|
|
|
class ConvertFrame:
|
|
def __init__(self, compiler_fn: CompilerFn, hooks: Hooks) -> None:
|
|
self._torchdynamo_orig_callable = compiler_fn
|
|
self._inner_convert = convert_frame_assert(compiler_fn, one_graph=False)
|
|
self._hooks = hooks
|
|
|
|
@property
|
|
def _clone_with_backend(self) -> Callable[[WrapBackendDebug], ConvertFrame]:
|
|
return lambda backend: convert_frame(backend, self._hooks)
|
|
|
|
def __call__(
|
|
self,
|
|
frame: FrameType,
|
|
cache_entry: Optional[CacheEntry],
|
|
hooks: Hooks,
|
|
frame_state: Dict[str, Union[int, FrameStateSizeEntry]],
|
|
skip: int = 0,
|
|
) -> Optional[
|
|
Union[
|
|
GuardedCode,
|
|
torch._C._dynamo.eval_frame.SkipCodeRecursiveFlag,
|
|
torch._C._dynamo.eval_frame.CacheLimitHitFlag,
|
|
]
|
|
]:
|
|
counters["frames"]["total"] += 1
|
|
try:
|
|
result = self._inner_convert(
|
|
frame, cache_entry, hooks, frame_state, skip=skip + 1
|
|
)
|
|
counters["frames"]["ok"] += 1
|
|
return result
|
|
except Exception as e:
|
|
# These two exception types are "soft" failure, in the sense that
|
|
# we know this is due to something we didn't implement all the
|
|
# way, scare the user less about it. That being said, if you
|
|
# are trying to understand why a graph break happened, it's still
|
|
# important to have this information, so offer it.
|
|
#
|
|
# NB: NotImplementedError used to be on this list, but actually
|
|
# it is impossible for it to reach here, as it is converted into
|
|
# InternalTorchDynamoError. This behavior seemed reasonable
|
|
# to me (ezyang, Aug 2023) so I kept it, but maybe at some point
|
|
# someone wanted these to also get suppressed. If so, you'll
|
|
# need to make these exceptions not get wrapped
|
|
|
|
# We intentionally don't want to suppress error here.
|
|
if isinstance(e, UncapturedHigherOrderOpError):
|
|
raise
|
|
|
|
soft_fail = isinstance(e, Unsupported)
|
|
|
|
# This is a soft failure. In the sense, the code path reaches here
|
|
# when we do not support graph breaks on bytecodes like LOAD_ATTR,
|
|
# BUILD_SET etc. In such case, we can fallback to eager without
|
|
# scaring users.
|
|
if isinstance(e, Unsupported) and graph_break_log.isEnabledFor(
|
|
logging.DEBUG
|
|
):
|
|
# Log this message in the graph break. Also use the string
|
|
# "skip: " to tell that the whole frame is falling back to
|
|
# eager.
|
|
if hasattr(e, "compile_id"):
|
|
with compile_context(CompileContext(e.compile_id)): # type: ignore[attr-defined]
|
|
user_stack = e.real_stack
|
|
user_stack_formatted = "".join(
|
|
traceback.format_list(user_stack)
|
|
)
|
|
user_stack_trace = f"Graph break: skip: from user code at:\n{user_stack_formatted}"
|
|
torch._logging.trace_structured(
|
|
"artifact",
|
|
metadata_fn=lambda: {
|
|
"name": "dynamo_graph_break_reason",
|
|
"encoding": "string",
|
|
},
|
|
payload_fn=lambda: f"{user_stack_trace}\n{traceback.format_exc()}",
|
|
)
|
|
graph_break_log.debug(
|
|
user_stack_trace,
|
|
exc_info=True,
|
|
)
|
|
|
|
if not config.suppress_errors and not soft_fail:
|
|
raise
|
|
|
|
# Suppress the error. NB: It's very important to do the
|
|
# suppression logging HERE, where the actual suppression
|
|
# happens. Previously it was somewhere else and so it was
|
|
# possible to accidentally not log at all.
|
|
record_filename = getattr(e, "record_filename", None)
|
|
code = frame.f_code
|
|
error_msg = format_error_msg(e, code, record_filename, frame)
|
|
|
|
if soft_fail:
|
|
log.info(error_msg, exc_info=True)
|
|
else:
|
|
log.warning(error_msg, exc_info=True)
|
|
|
|
# If we encounter SkipCodeRecursiveException, return skip_code_recursive_flag
|
|
# to signal to Dynamo eval frame to skip the current frame and any recursive calls.
|
|
if isinstance(e, SkipCodeRecursiveException):
|
|
return torch._C._dynamo.eval_frame.skip_code_recursive_flag
|
|
elif isinstance(e, CacheLimitExceeded):
|
|
# signal to Dynamo to run this frame on run-only mode, skipping recursively if
|
|
# no valid cache entry is found.
|
|
return torch._C._dynamo.eval_frame.cache_limit_hit_flag
|
|
|
|
return None
|
|
|
|
|
|
def convert_frame(compiler_fn: CompilerFn, hooks: Hooks) -> ConvertFrame:
|
|
"""Try to convert a frame into an FX graph, if error leave frame unmodified"""
|
|
return ConvertFrame(compiler_fn, hooks)
|
|
|
|
|
|
# TODO mlazos: add support for same args, or record them
|
|
def replay(filename: str) -> None:
|
|
from .backends.debugging import eager
|
|
|
|
original_replay_val = config.replay_record_enabled
|
|
config.replay_record_enabled = False
|
|
with open(filename, "rb") as in_file:
|
|
record = ExecutionRecord.load(in_file)
|
|
record.globals = dict(itertools.chain(record.globals.items(), globals().items()))
|
|
|
|
try:
|
|
_compile(
|
|
record.code,
|
|
record.globals,
|
|
record.locals,
|
|
record.builtins,
|
|
compiler_fn=eager,
|
|
one_graph=False,
|
|
export=False,
|
|
export_constraints=None,
|
|
hooks=Hooks(),
|
|
cache_size=CacheSizeRelevantForFrame(0, 0),
|
|
cache_entry=None,
|
|
frame=None,
|
|
frame_state={},
|
|
compile_id=CompileId(42, 999),
|
|
)
|
|
finally:
|
|
config.replay_record_enabled = original_replay_val
|
|
|
|
|
|
def first_real_inst_idx(code: CodeType) -> int:
|
|
if sys.version_info < (3, 11):
|
|
return 0
|
|
for inst in dis.get_instructions(code):
|
|
if inst.opname == "RESUME":
|
|
return inst.offset // 2
|
|
raise RuntimeError("RESUME instruction not found in code")
|
|
|
|
|
|
class ConvertFrameProtocol(typing.Protocol):
|
|
def __call__(
|
|
self,
|
|
frame: FrameType,
|
|
cache_entry: Optional[CacheEntry],
|
|
hooks: Hooks,
|
|
frame_state: Dict[str, Union[int, FrameStateSizeEntry]],
|
|
*,
|
|
skip: int = 0,
|
|
) -> Optional[GuardedCode]:
|
|
...
|
|
|
|
|
|
class CatchErrorsWrapper:
|
|
def __init__(self, callback: ConvertFrameProtocol, hooks: Hooks) -> None:
|
|
functools.wraps(callback)(self)
|
|
self._torchdynamo_orig_callable = callback
|
|
self.hooks = hooks
|
|
|
|
def __call__(
|
|
self,
|
|
frame: FrameType,
|
|
cache_entry: Optional[CacheEntry],
|
|
frame_state: Dict[str, Union[int, FrameStateSizeEntry]],
|
|
) -> Optional[GuardedCode]:
|
|
assert frame_state is not None
|
|
|
|
is_skipfile = trace_rules.check(frame.f_code)
|
|
if sys.version_info >= (3, 13):
|
|
has_started_execution = frame.f_lasti > first_real_inst_idx(frame.f_code)
|
|
else:
|
|
has_started_execution = frame.f_lasti >= first_real_inst_idx(frame.f_code)
|
|
if (
|
|
# TODO: the first condition is not covered by any test
|
|
has_started_execution
|
|
or is_skipfile
|
|
or config.disable
|
|
or (
|
|
is_in_torch_dispatch_mode(include_infra_modes=False)
|
|
and not getattr(self._torchdynamo_orig_callable, "_export", False)
|
|
)
|
|
):
|
|
if log.isEnabledFor(logging.DEBUG):
|
|
if has_started_execution:
|
|
skip_reason = "traced frame already"
|
|
elif trace_rules.check(frame.f_code):
|
|
skip_reason = "in skipfiles"
|
|
elif is_in_torch_dispatch_mode(include_infra_modes=False):
|
|
skip_reason = "non-infra torch dispatch mode present, this is not supported today in torch.compile"
|
|
else:
|
|
skip_reason = "dynamo tracing is disabled"
|
|
|
|
log.debug(
|
|
"skipping: %s (reason: %s, file: %s)",
|
|
frame.f_code.co_name,
|
|
skip_reason,
|
|
frame.f_code.co_filename,
|
|
)
|
|
return None
|
|
|
|
if frame.f_code.co_filename == "<string>" and frame.f_code.co_name == "__new__":
|
|
# nametuple constructor
|
|
return None
|
|
if config._get_optimize_ddp_mode() == "ddp_optimizer":
|
|
ddp_module = DistributedDataParallel._get_active_ddp_module()
|
|
if ddp_module:
|
|
with compile_lock:
|
|
from torch._dynamo.backends.distributed import DDPOptimizer
|
|
|
|
ddp_optimizer = DDPOptimizer(
|
|
bucket_bytes_cap=ddp_module.bucket_bytes_cap,
|
|
backend_compile_fn=self._torchdynamo_orig_callable._torchdynamo_orig_callable, # type: ignore[attr-defined]
|
|
)
|
|
assert hasattr(
|
|
self._torchdynamo_orig_callable, "_clone_with_backend"
|
|
), "DDPOptimizer only supports callback fns that know how to clone themselves."
|
|
hijacked_callback = (
|
|
self._torchdynamo_orig_callable._clone_with_backend(
|
|
ddp_optimizer.compile_fn,
|
|
)
|
|
)
|
|
return hijacked_callback(
|
|
frame, cache_entry, self.hooks, frame_state
|
|
)
|
|
|
|
with compile_lock, _disable_current_modes():
|
|
# skip=1: skip this frame
|
|
return self._torchdynamo_orig_callable(
|
|
frame, cache_entry, self.hooks, frame_state, skip=1
|
|
)
|
|
|
|
|
|
def catch_errors_wrapper(
|
|
callback: ConvertFrameProtocol, hooks: Hooks
|
|
) -> CatchErrorsWrapper:
|
|
return CatchErrorsWrapper(callback, hooks)
|