mirror of
https://github.com/pytorch/pytorch.git
synced 2025-10-21 05:34:18 +08:00
Summary: Previously, we would continue to run requires grad on a loop body when the outputs and inputs disagreed. This adds a check so that we don't continue running if the results haven't changed since the last run. Fix for https://github.com/pytorch/pytorch/issues/18320 Pull Request resolved: https://github.com/pytorch/pytorch/pull/18361 Differential Revision: D14584332 Pulled By: eellison fbshipit-source-id: 696b225f80a2036318540946428b525985a9e735
707 lines
23 KiB
C++
707 lines
23 KiB
C++
#include <torch/csrc/python_headers.h>
|
|
|
|
#include <torch/csrc/jit/argument_spec.h>
|
|
#include <torch/csrc/jit/export.h>
|
|
#include <torch/csrc/jit/ir.h>
|
|
#include <torch/csrc/jit/passes/alias_analysis.h>
|
|
#include <torch/csrc/jit/passes/python_print.h>
|
|
#include <torch/csrc/jit/passes/shape_analysis.h>
|
|
#include <torch/csrc/jit/pybind.h>
|
|
#include <torch/csrc/jit/python_tracer.h>
|
|
#include <torch/csrc/utils/auto_gil.h>
|
|
#include <torch/csrc/utils/pybind.h>
|
|
#include <torch/csrc/utils/python_strings.h>
|
|
|
|
#include <iostream>
|
|
#include <sstream>
|
|
|
|
namespace torch {
|
|
namespace jit {
|
|
|
|
using c10::Type;
|
|
|
|
std::string getPythonName(const PyObject* obj_) {
|
|
AutoGIL gil;
|
|
// NOLINTNEXTLINE(cppcoreguidelines-pro-type-const-cast)
|
|
PyObject* obj = const_cast<PyObject*>(obj_);
|
|
auto v = py::getattr(obj, "__name__", py::str("<python_value>"));
|
|
// if this was a autograd.Function recover the name of the class
|
|
return py::str(v);
|
|
}
|
|
|
|
std::ostream& printPyObject(std::ostream& out, const THPObjectPtr& obj) {
|
|
AutoGIL gil;
|
|
// NOLINTNEXTLINE(cppcoreguidelines-pro-type-const-cast)
|
|
auto pyobj = py::handle(const_cast<PyObject*>(obj.get()));
|
|
if (py::isinstance<py::tuple>(pyobj)) {
|
|
// This special-case for printing tuples handles a problem where
|
|
// str((2L, 3L)) outputs "(2L, 3L)" in Python 2 but "(2, 3)"
|
|
// in Python 3. In order to suppress the L-suffix, we must
|
|
// manually print the string ourselves, calling str() on the
|
|
// sub-elements.
|
|
//
|
|
// This is a fairly fragile fix (What if you have nested tuples
|
|
// in tuples? What if you have dictionaries?) but it seems to hit
|
|
// the cases that are triggered in practice in onnx-pytorch. Revisit
|
|
// this code if this is not the case.
|
|
//
|
|
// By the way, one non-solution for this problem is to monkeypatch
|
|
// tuple.__str__; this doesn't work because Python doesn't allow
|
|
// monkeypatching methods of built-in types.
|
|
auto pytuple = pyobj.cast<py::tuple>();
|
|
out << "(";
|
|
size_t i = 0;
|
|
for (const auto& o : pytuple) {
|
|
if (i > 0) {
|
|
out << ", ";
|
|
}
|
|
THPObjectPtr str(py::str(o).release().ptr());
|
|
out << THPUtils_unpackString(str.get());
|
|
i++;
|
|
}
|
|
if (i == 1) {
|
|
out << ",";
|
|
}
|
|
out << ")";
|
|
return out;
|
|
} else {
|
|
return out << THPUtils_unpackString(py::str(pyobj).ptr());
|
|
}
|
|
}
|
|
|
|
std::vector<Node*> findAllNodes(
|
|
c10::ArrayRef<torch::jit::Block*> blocks,
|
|
Symbol kind,
|
|
bool recurse = true) {
|
|
std::vector<Node*> ret;
|
|
for (Block* block : blocks) {
|
|
for (Node* n : block->nodes()) {
|
|
if (n->kind() == kind) {
|
|
ret.push_back(n);
|
|
}
|
|
if (recurse) {
|
|
auto nodes = findAllNodes(n->blocks(), kind, recurse);
|
|
ret.insert(ret.end(), nodes.begin(), nodes.end());
|
|
}
|
|
}
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
std::vector<Node*> findAllNodes(
|
|
Block* block,
|
|
Symbol kind,
|
|
bool recurse = true) {
|
|
std::vector<Block*> blocks = {block};
|
|
return findAllNodes(blocks, kind, recurse);
|
|
}
|
|
|
|
Node* findNode(
|
|
c10::ArrayRef<torch::jit::Block*> blocks,
|
|
Symbol kind,
|
|
bool recurse = true) {
|
|
for (Block* block : blocks) {
|
|
for (Node* n : block->nodes()) {
|
|
if (n->kind() == kind) {
|
|
return n;
|
|
}
|
|
if (recurse) {
|
|
auto node = findNode(n->blocks(), kind, recurse);
|
|
if (node != nullptr) {
|
|
return node;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
return nullptr;
|
|
}
|
|
|
|
Node* findNode(Block* block, Symbol kind, bool recurse = true) {
|
|
std::vector<Block*> blocks = {block};
|
|
return findNode(blocks, kind, recurse);
|
|
}
|
|
|
|
// execute a Python function, used for Ops we can't optimize but that we want to
|
|
// optimize around
|
|
struct ConcretePythonOp : public PythonOp {
|
|
ConcretePythonOp(Graph* graph) : PythonOp(graph) {}
|
|
std::string name() const override {
|
|
AutoGIL gil;
|
|
if (auto autograd = autogradFunction()) {
|
|
return getPythonName(autograd->get());
|
|
} else {
|
|
return getPythonName(pyobj.get());
|
|
}
|
|
}
|
|
void cloneFrom(Node* other_) override {
|
|
Node::cloneFrom(other_);
|
|
auto other = other_->cast<PythonOp>();
|
|
this->cconv = other->cconv;
|
|
Py_INCREF(other->pyobj.get());
|
|
this->pyobj = THPObjectPtr(other->pyobj.get());
|
|
for (auto& sa : other->scalar_args) {
|
|
Py_INCREF(sa.get());
|
|
this->scalar_args.emplace_back(sa.get());
|
|
}
|
|
}
|
|
Node* allocNewInstance(Graph* g) override {
|
|
return new ConcretePythonOp(g);
|
|
}
|
|
// recover the autograd.Function instance, if this PythonOp's function
|
|
// was originally SomeFunction.apply
|
|
// used in ONNX for discovering symbolics
|
|
c10::optional<THPObjectPtr> autogradFunction() const override {
|
|
AutoGIL gil;
|
|
// NOLINTNEXTLINE(cppcoreguidelines-pro-type-const-cast)
|
|
py::handle obj = const_cast<PyObject*>(pyobj.get());
|
|
|
|
auto r = py::getattr(obj, "__self__", py::none());
|
|
if (r.is_none())
|
|
return c10::nullopt;
|
|
|
|
auto apply = py::getattr(r, "apply", py::none());
|
|
if (apply.is_none())
|
|
return c10::nullopt;
|
|
|
|
auto c = PyObject_RichCompareBool(apply.ptr(), obj.ptr(), Py_NE);
|
|
if (PyErr_Occurred())
|
|
throw py::error_already_set();
|
|
if (c)
|
|
return c10::nullopt;
|
|
|
|
return THPObjectPtr(r.release().ptr());
|
|
}
|
|
|
|
void writeScalars(std::ostream& out) const override {
|
|
out << "(";
|
|
int i = 0;
|
|
for (auto& scalar : scalar_args) {
|
|
if (i++ > 0)
|
|
out << ", ";
|
|
printPyObject(out, scalar);
|
|
}
|
|
out << ")";
|
|
}
|
|
};
|
|
|
|
PythonOp* pythonAllocPythonOp(Graph* g) {
|
|
return new ConcretePythonOp(g);
|
|
}
|
|
|
|
void initPythonIRBindings(PyObject* module_) {
|
|
setAllocPythonOp(pythonAllocPythonOp);
|
|
|
|
auto m = py::handle(module_).cast<py::module>();
|
|
#define GS(name) def(#name, &Graph ::name)
|
|
py::class_<Graph, std::shared_ptr<Graph>>(m, "Graph")
|
|
.def(py::init<>())
|
|
.def(
|
|
"__repr__",
|
|
[](Graph& g) {
|
|
std::stringstream ss;
|
|
ss << g;
|
|
return ss.str();
|
|
})
|
|
.def(
|
|
"dump_alias_db",
|
|
[](std::shared_ptr<Graph> g) {
|
|
AliasDb db(g);
|
|
db.dump();
|
|
})
|
|
.def(
|
|
"propagate_shapes",
|
|
[](std::shared_ptr<Graph> g,
|
|
std::vector<at::Tensor> inputs,
|
|
bool with_grad) {
|
|
setInputTypes(
|
|
*g,
|
|
ArgumentSpec(with_grad, fmap<IValue>(inputs), inputs.size()));
|
|
PropagateInputShapes(g);
|
|
})
|
|
.def(
|
|
"_export_onnx",
|
|
[](const std::shared_ptr<Graph> g,
|
|
const std::vector<at::Tensor>& initializers,
|
|
int64_t onnx_opset_version,
|
|
bool defer_weight_export,
|
|
::torch::onnx::OperatorExportTypes operator_export_type) {
|
|
std::string graph;
|
|
RawDataExportMap export_map;
|
|
std::tie(graph, export_map) = export_onnx(
|
|
g,
|
|
initializers,
|
|
onnx_opset_version,
|
|
defer_weight_export,
|
|
operator_export_type);
|
|
std::unordered_map<std::string, py::bytes>
|
|
python_serialized_export_map;
|
|
for (auto& kv : export_map) {
|
|
auto t = kv.second;
|
|
size_t copy_bytes = t.element_size() * t.numel();
|
|
// TODO: this is an unecessary copy. In theory we can directly
|
|
// return the map from identifier to Tensor, but we need some API
|
|
// in Python to get raw `bytes` containing the raw tensor data.
|
|
python_serialized_export_map[kv.first] =
|
|
py::bytes(static_cast<const char*>(t.data_ptr()), copy_bytes);
|
|
}
|
|
return std::make_tuple(
|
|
py::bytes(graph), python_serialized_export_map);
|
|
},
|
|
py::arg("initializers"),
|
|
py::arg("onnx_opset_version") = 0,
|
|
py::arg("defer_weight_export") = false,
|
|
py::arg("operator_export_type") =
|
|
::torch::onnx::OperatorExportTypes::ONNX)
|
|
.def(
|
|
"_pretty_print_onnx",
|
|
[](const std::shared_ptr<Graph> g,
|
|
const std::vector<at::Tensor>& initializers,
|
|
int64_t onnx_opset_version,
|
|
bool defer_weight_export,
|
|
::torch::onnx::OperatorExportTypes operator_export_type,
|
|
bool google_printer) {
|
|
return pretty_print_onnx(
|
|
g,
|
|
initializers,
|
|
onnx_opset_version,
|
|
defer_weight_export,
|
|
operator_export_type,
|
|
google_printer);
|
|
},
|
|
py::arg("initializers"),
|
|
py::arg("onnx_opset_version") = 0,
|
|
py::arg("defer_weight_export") = false,
|
|
py::arg("operator_export_type") =
|
|
::torch::onnx::OperatorExportTypes::ONNX,
|
|
py::arg("google_printer") = false)
|
|
.def(
|
|
"inputs",
|
|
[](Graph& g) {
|
|
return py::make_iterator(g.inputs().begin(), g.inputs().end());
|
|
})
|
|
.def(
|
|
"outputs",
|
|
[](Graph& g) {
|
|
return py::make_iterator(g.outputs().begin(), g.outputs().end());
|
|
})
|
|
// TODO: Iterator invalidation might make this hazardous
|
|
.def(
|
|
"nodes",
|
|
[](Graph& g) {
|
|
return py::make_iterator(g.nodes().begin(), g.nodes().end());
|
|
})
|
|
.def(
|
|
"findNode",
|
|
[](Graph& g, const std::string& kind, bool recurse) {
|
|
return findNode(g.block(), Symbol::fromQualString(kind), recurse);
|
|
},
|
|
"Find Node",
|
|
py::arg("kind"),
|
|
py::arg("recurse") = true)
|
|
.def(
|
|
"findAllNodes",
|
|
[](Graph& g, const std::string& kind, bool recurse) {
|
|
return findAllNodes(
|
|
g.block(), Symbol::fromQualString(kind), recurse);
|
|
},
|
|
"Find all nodes",
|
|
py::arg("kind"),
|
|
py::arg("recurse") = true)
|
|
.def("addInput", [](Graph& g) { return g.addInput(); })
|
|
.def("copy", [](Graph& g) { return g.copy(); })
|
|
.GS(eraseInput)
|
|
.GS(registerOutput)
|
|
.def(
|
|
"create",
|
|
[](Graph& g, const char* str) {
|
|
return g.create(Symbol::fromQualString(str));
|
|
})
|
|
.def(
|
|
"create",
|
|
[](Graph& g, const char* str, size_t noutputs) {
|
|
return g.create(Symbol::fromQualString(str), noutputs);
|
|
})
|
|
.def(
|
|
"create",
|
|
[](Graph& g, const char* str, const std::vector<Value*>& inputs) {
|
|
return g.create(Symbol::fromQualString(str), inputs);
|
|
})
|
|
.def(
|
|
"create",
|
|
[](Graph& g,
|
|
const char* str,
|
|
const std::vector<Value*>& inputs,
|
|
size_t noutputs) {
|
|
return g.create(Symbol::fromQualString(str), inputs, noutputs);
|
|
})
|
|
.def("param_node", [](Graph& g) { return g.block()->param_node(); })
|
|
.def("return_node", [](Graph& g) { return g.block()->return_node(); })
|
|
.def(
|
|
"pretty_print",
|
|
[](Graph& g) {
|
|
std::ostringstream oss;
|
|
g.prettyPrint(oss);
|
|
return oss.str();
|
|
})
|
|
.GS(createFusionGroup)
|
|
.def(
|
|
"createClone",
|
|
[](Graph& g, Node* n, py::object fn) {
|
|
return g.createClone(
|
|
n, [&](Value* e) { return fn(e).cast<Value*>(); });
|
|
})
|
|
.GS(appendNode)
|
|
.GS(prependNode)
|
|
.GS(lint)
|
|
.GS(insertNode);
|
|
#undef GS
|
|
|
|
#define VS(name) def(#name, &Value ::name)
|
|
py::class_<Value, std::unique_ptr<Value, py::nodelete>>(m, "Value")
|
|
.def(
|
|
"__repr__",
|
|
[](Value& n) {
|
|
std::stringstream ss;
|
|
ss << n.uniqueName() << " defined in (" << *n.node() << ")";
|
|
return ss.str();
|
|
})
|
|
.VS(type)
|
|
.VS(setType)
|
|
.VS(inferTypeFrom)
|
|
// skip owningGraph because it returns a raw pointer to a otherwise
|
|
// std::shared_ptr stored graph object, and would cause a double free
|
|
.VS(unique)
|
|
.VS(uniqueName)
|
|
.VS(setUniqueName)
|
|
.VS(offset)
|
|
.VS(uses)
|
|
.VS(replaceAllUsesWith)
|
|
.def("node", [](Value& v) { return v.node(); })
|
|
.def(
|
|
"setTypeAs",
|
|
[](Value* node, Value* other) {
|
|
node->setType(other->type());
|
|
return node;
|
|
})
|
|
.VS(copyMetadata)
|
|
.VS(isTensor)
|
|
.VS(requires_grad)
|
|
.def("toIValue", [](Value& n) { return toIValue(&n); })
|
|
.def("type", [](Value& v) { return v.type(); });
|
|
#undef VS
|
|
|
|
py::class_<Block, std::unique_ptr<Block, py::nodelete>>(m, "Block")
|
|
.def(
|
|
"nodes",
|
|
[](Block& b) {
|
|
return py::make_iterator(b.nodes().begin(), b.nodes().end());
|
|
})
|
|
.def(
|
|
"findNode",
|
|
[](Block& b, const std::string& kind, bool recurse) {
|
|
return findNode(&b, Symbol::fromQualString(kind), recurse);
|
|
},
|
|
"Find Node",
|
|
py::arg("kind"),
|
|
py::arg("recurse") = true)
|
|
.def(
|
|
"findAllNodes",
|
|
[](Block& b, const std::string& kind, bool recurse) {
|
|
return findAllNodes(&b, Symbol::fromQualString(kind), recurse);
|
|
},
|
|
"Find all nodes",
|
|
py::arg("kind"),
|
|
py::arg("recurse") = true)
|
|
.def(
|
|
"inputs",
|
|
[](Block& b) {
|
|
return py::make_iterator(b.inputs().begin(), b.inputs().end());
|
|
})
|
|
.def(
|
|
"outputs",
|
|
[](Block& b) {
|
|
return py::make_iterator(b.outputs().begin(), b.outputs().end());
|
|
})
|
|
.def(
|
|
"returnNode",
|
|
[](Block& b) {
|
|
return b.return_node();
|
|
})
|
|
.def(
|
|
"paramNode",
|
|
[](Block& b) {
|
|
return b.param_node();
|
|
});
|
|
|
|
#define NS(name) def(#name, &Node ::name)
|
|
py::class_<Node, std::unique_ptr<Node, py::nodelete>>(m, "Node")
|
|
.def(
|
|
"__repr__",
|
|
[](Node& n) {
|
|
std::stringstream ss;
|
|
ss << n;
|
|
return ss.str();
|
|
})
|
|
.def(
|
|
"getSourceLocation",
|
|
[](Node& n) -> py::object {
|
|
std::stringstream ss;
|
|
if (auto sl = n.getSourceLocation()) {
|
|
sl->highlight(ss);
|
|
return py::str(ss.str());
|
|
} else {
|
|
return py::none();
|
|
}
|
|
})
|
|
.def("hasMultipleOutputs", [](Node& n) { return n.outputs().size() > 1; })
|
|
.def("outputsSize", [](Node& n) { return n.outputs().size(); })
|
|
.NS(kind)
|
|
.def("inputsAt", [](Node& n, size_t i) { return n.inputs().at(i); })
|
|
.def(
|
|
"inputs",
|
|
[](Node& n) {
|
|
return py::make_iterator(n.inputs().begin(), n.inputs().end());
|
|
})
|
|
.def(
|
|
"outputs",
|
|
[](Node& n) {
|
|
return py::make_iterator(n.outputs().begin(), n.outputs().end());
|
|
})
|
|
.def("outputsAt", [](Node& n, size_t i) { return n.outputs().at(i); })
|
|
.def(
|
|
"findNode",
|
|
[](Node& n, const std::string& kind, bool recurse) {
|
|
return findNode(n.blocks(), Symbol::fromQualString(kind), recurse);
|
|
},
|
|
"Find Node",
|
|
py::arg("kind"),
|
|
py::arg("recurse") = true)
|
|
.def(
|
|
"findAllNodes",
|
|
[](Node& n, const std::string& kind, bool recurse) {
|
|
return findAllNodes(
|
|
n.blocks(), Symbol::fromQualString(kind), recurse);
|
|
},
|
|
"Find all nodes",
|
|
py::arg("kind"),
|
|
py::arg("recurse") = true)
|
|
.def("input", [](Node& n) { return n.input(); })
|
|
.def("output", [](Node& n) { return n.output(); })
|
|
.NS(addInput)
|
|
.NS(replaceInput)
|
|
.NS(replaceInputWith)
|
|
.NS(replaceAllUsesWith)
|
|
.NS(insertBefore)
|
|
.NS(insertAfter)
|
|
.NS(moveAfter)
|
|
.NS(moveBefore)
|
|
.NS(removeInput)
|
|
.NS(removeAllInputs)
|
|
.NS(destroy)
|
|
.NS(hasUses)
|
|
.NS(eraseOutput)
|
|
.NS(addOutput)
|
|
.NS(scopeName)
|
|
.NS(isNondeterministic)
|
|
.def(
|
|
"blocks",
|
|
[](Node& n) {
|
|
return py::make_iterator(n.blocks().begin(), n.blocks().end());
|
|
})
|
|
.NS(addBlock)
|
|
.NS(mustBeNone)
|
|
|
|
#define AS(name) def(#name, &Node::name)
|
|
// methods from Attributes
|
|
.AS(copyAttributes)
|
|
.AS(hasAttributes)
|
|
#undef AS
|
|
#define AS(name) def(#name, &Node::name##S)
|
|
// The default method names take Symbol, but the string conversion for
|
|
// Symbol you to qualify with attr::. This is not very user friendly
|
|
// for attributes, so expose the string variants instead.
|
|
.AS(hasAttribute)
|
|
.AS(kindOf)
|
|
.AS(removeAttribute)
|
|
.AS(attributeNames)
|
|
#undef AS
|
|
#define CREATE_ACCESSOR(Kind, method) \
|
|
def(#method "_", \
|
|
[](Node& n, const char* name, Kind##Attr::ValueType v) { \
|
|
return n.method##_(Symbol::attr(name), std::move(v)); \
|
|
}) \
|
|
.def(#method, [](Node& n, const char* name) { \
|
|
return n.method(Symbol::attr(name)); \
|
|
})
|
|
.CREATE_ACCESSOR(Float, f)
|
|
.CREATE_ACCESSOR(Floats, fs)
|
|
.CREATE_ACCESSOR(String, s)
|
|
.CREATE_ACCESSOR(Strings, ss)
|
|
.CREATE_ACCESSOR(Int, i)
|
|
.CREATE_ACCESSOR(Ints, is)
|
|
.CREATE_ACCESSOR(Graph, g)
|
|
.CREATE_ACCESSOR(Graphs, gs)
|
|
#undef CREATE_ACCESSOR
|
|
// Tensor (t_) -- manually written to unwrap the variable into a tensor.
|
|
.def(
|
|
"t_",
|
|
[](Node& n, const char* name, torch::autograd::Variable v) {
|
|
AT_ASSERT(!v.requires_grad());
|
|
return n.t_(Symbol::attr(name), v);
|
|
})
|
|
.def(
|
|
"t",
|
|
[](Node& n, const char* name) { return n.t(Symbol::attr(name)); })
|
|
// Tensors (ts_) -- manually written to unwrap variables into tensors.
|
|
.def(
|
|
"ts_",
|
|
[](Node& n,
|
|
const char* name,
|
|
std::vector<torch::autograd::Variable> vs) {
|
|
std::vector<at::Tensor> tensors;
|
|
tensors.reserve(vs.size());
|
|
for (auto& variable : vs) {
|
|
AT_ASSERT(!variable.requires_grad());
|
|
tensors.push_back(variable);
|
|
}
|
|
return n.ts_(Symbol::attr(name), std::move(tensors));
|
|
})
|
|
.def(
|
|
"ts",
|
|
[](Node& n, const char* name) {
|
|
auto tensors = n.ts(Symbol::attr(name));
|
|
std::vector<torch::autograd::Variable> variables;
|
|
variables.reserve(tensors.size());
|
|
for (auto& tensor : tensors) {
|
|
variables.emplace_back(std::move(tensor));
|
|
}
|
|
return variables;
|
|
})
|
|
.def(
|
|
"z_",
|
|
[](Node& n, const char* name, at::Tensor v) {
|
|
return n.t_(
|
|
Symbol::attr(name),
|
|
autograd::Variable(v.view({})).set_requires_grad(false));
|
|
})
|
|
.def(
|
|
"z",
|
|
[](Node& n, const char* name) { return n.t(Symbol::attr(name)); })
|
|
.def(
|
|
"zs_",
|
|
[](Node& n, const char* name, TensorsAttr::ValueType v) {
|
|
for (auto& i : v) {
|
|
i = autograd::Variable(i.view({})).set_requires_grad(false);
|
|
}
|
|
return n.ts_(Symbol::attr(name), std::move(v));
|
|
})
|
|
.def(
|
|
"zs",
|
|
[](Node& n, const char* name) { return n.ts(Symbol::attr(name)); })
|
|
.def(
|
|
"pyobj",
|
|
[](Node& n) {
|
|
return py::handle(n.expect<PythonOp>()->pyobj.get())
|
|
.cast<py::object>();
|
|
})
|
|
.def("cconv", [](Node& n) { return n.expect<PythonOp>()->cconv; })
|
|
.def("pyname", [](Node& n) { return n.expect<PythonOp>()->name(); })
|
|
.def("scalar_args", [](Node& n) {
|
|
auto op = n.expect<PythonOp>();
|
|
auto scalars = py::list();
|
|
auto append = scalars.attr("append");
|
|
for (auto& arg : op->scalar_args) {
|
|
append(py::handle(arg.get()));
|
|
}
|
|
return scalars;
|
|
});
|
|
|
|
using ::c10::Type;
|
|
py::class_<Type, std::shared_ptr<Type>>(m, "Type")
|
|
.def("__repr__", [](Type& t) { return t.python_str(); })
|
|
.def(
|
|
"str",
|
|
[](Type& t) {
|
|
std::ostringstream s;
|
|
s << t;
|
|
return s.str();
|
|
})
|
|
.def("kind", [](const Type& t) { return typeKindToString(t.kind()); })
|
|
.def(
|
|
"dim",
|
|
[](const Type& t) {
|
|
return t.expect<DimensionedTensorType>()->dim();
|
|
})
|
|
.def(
|
|
"sizes",
|
|
[](Type& t) { return t.expect<CompleteTensorType>()->sizes(); })
|
|
.def(
|
|
"strides",
|
|
[](Type& t) { return t.expect<CompleteTensorType>()->strides(); })
|
|
.def(
|
|
"contiguous",
|
|
[](Type& t) {
|
|
return std::static_pointer_cast<Type>(
|
|
t.expect<CompleteTensorType>()->contiguous());
|
|
})
|
|
.def(
|
|
"scalarType",
|
|
[](Type& t) {
|
|
return toString(t.expect<DimensionedTensorType>()->scalarType());
|
|
})
|
|
.def(
|
|
"__eq__",
|
|
[](std::shared_ptr<Type>& self, std::shared_ptr<Type>& other) {
|
|
return *self == *other;
|
|
})
|
|
.def(
|
|
"isSubtypeOf",
|
|
[](std::shared_ptr<Type>& self, std::shared_ptr<Type> other) {
|
|
return self->isSubtypeOf(other);
|
|
});
|
|
|
|
py::class_<NumberType, Type, std::shared_ptr<NumberType>>(m, "NumberType")
|
|
.def_static("get", &NumberType::get);
|
|
py::class_<IntType, Type, std::shared_ptr<IntType>>(m, "IntType")
|
|
.def_static("get", &IntType::get);
|
|
py::class_<FloatType, Type, std::shared_ptr<FloatType>>(m, "FloatType")
|
|
.def_static("get", &FloatType::get);
|
|
py::class_<TensorType, Type, std::shared_ptr<TensorType>>(m, "TensorType")
|
|
.def_static("get", &TensorType::get);
|
|
py::class_<BoolType, Type, std::shared_ptr<BoolType>>(m, "BoolType")
|
|
.def_static("get", &BoolType::get);
|
|
py::class_<StringType, Type, std::shared_ptr<StringType>>(m, "StringType")
|
|
.def_static("get", &StringType::get);
|
|
|
|
py::class_<TupleType, Type, std::shared_ptr<TupleType>>(m, "TupleType")
|
|
.def(
|
|
py::init([](std::vector<TypePtr> a) { return TupleType::create(a); }))
|
|
.def("elements", [](TupleType& self) {
|
|
std::vector<TypePtr> types;
|
|
for (const auto& type : self.elements()) {
|
|
types.push_back(type);
|
|
}
|
|
return types;
|
|
});
|
|
py::class_<ListType, Type, std::shared_ptr<ListType>>(m, "ListType")
|
|
.def(py::init([](TypePtr a) { return ListType::create(a); }))
|
|
.def_static("ofInts", &ListType::ofInts)
|
|
.def_static("ofTensors", &ListType::ofTensors)
|
|
.def("getElementType", &ListType::getElementType);
|
|
py::class_<DictType, Type, std::shared_ptr<DictType>>(m, "DictType")
|
|
.def(py::init([](TypePtr key, TypePtr value) {
|
|
return DictType::create(key, value);
|
|
}));
|
|
py::class_<OptionalType, Type, std::shared_ptr<OptionalType>>(
|
|
m, "OptionalType")
|
|
.def(py::init([](TypePtr a) { return OptionalType::create(a); }))
|
|
.def_static("ofTensor", &OptionalType::ofTensor)
|
|
.def("getElementType", &OptionalType::getElementType);
|
|
|
|
py::class_<Use>(m, "Use")
|
|
.def_readonly("user", &Use::user)
|
|
.def_readonly("offset", &Use::offset);
|
|
}
|
|
} // namespace jit
|
|
} // namespace torch
|