mirror of
https://github.com/pytorch/pytorch.git
synced 2025-10-21 05:34:18 +08:00
Partially addresses #123062 Ran lintrunner on: - `test/fx` with command: ```bash lintrunner -a --take UFMT --all-files ``` Pull Request resolved: https://github.com/pytorch/pytorch/pull/123622 Approved by: https://github.com/ezyang
208 lines
7.4 KiB
Python
208 lines
7.4 KiB
Python
# Owner(s): ["module: fx"]
|
|
|
|
import os
|
|
import sys
|
|
import unittest
|
|
|
|
import torch
|
|
|
|
pytorch_test_dir = os.path.dirname(os.path.dirname(os.path.realpath(__file__)))
|
|
sys.path.append(pytorch_test_dir)
|
|
from torch._dynamo.eval_frame import is_dynamo_supported
|
|
from torch.fx.passes.utils.source_matcher_utils import (
|
|
check_subgraphs_connected,
|
|
get_source_partitions,
|
|
)
|
|
from torch.testing._internal.jit_utils import JitTestCase
|
|
|
|
|
|
class TestSourceMatcher(JitTestCase):
|
|
@unittest.skipIf(not is_dynamo_supported(), "Dynamo not supported")
|
|
def test_module_partitioner_linear_relu_linear(self):
|
|
class M(torch.nn.Module):
|
|
def __init__(self):
|
|
super().__init__()
|
|
self.linear1 = torch.nn.Linear(3, 3)
|
|
self.relu = torch.nn.ReLU()
|
|
self.linear2 = torch.nn.Linear(3, 5)
|
|
|
|
def forward(self, x):
|
|
x = self.linear1(x)
|
|
x = self.linear1(x)
|
|
x = self.relu(x)
|
|
x = self.linear2(x)
|
|
return x
|
|
|
|
inputs = (torch.randn(3, 3),)
|
|
gm, _ = torch._dynamo.export(M(), aten_graph=True)(*inputs)
|
|
gm.graph.eliminate_dead_code()
|
|
|
|
module_partitions = get_source_partitions(
|
|
gm.graph, [torch.nn.Linear, torch.nn.ReLU]
|
|
)
|
|
|
|
self.assertEqual(len(module_partitions), 2)
|
|
self.assertEqual(len(module_partitions[torch.nn.Linear]), 3)
|
|
self.assertEqual(len(module_partitions[torch.nn.ReLU]), 1)
|
|
|
|
self.assertFalse(
|
|
check_subgraphs_connected(
|
|
module_partitions[torch.nn.Linear][0],
|
|
module_partitions[torch.nn.ReLU][0],
|
|
)
|
|
)
|
|
self.assertTrue(
|
|
check_subgraphs_connected(
|
|
module_partitions[torch.nn.Linear][1],
|
|
module_partitions[torch.nn.ReLU][0],
|
|
)
|
|
)
|
|
self.assertFalse(
|
|
check_subgraphs_connected(
|
|
module_partitions[torch.nn.Linear][2],
|
|
module_partitions[torch.nn.ReLU][0],
|
|
)
|
|
)
|
|
|
|
@unittest.skipIf(not is_dynamo_supported(), "Dynamo not supported")
|
|
def test_module_partitioner_conv_relu_maxpool(self):
|
|
class M(torch.nn.Module):
|
|
def __init__(self, constant_tensor: torch.Tensor) -> None:
|
|
super().__init__()
|
|
self.constant_tensor = constant_tensor
|
|
self.conv1 = torch.nn.Conv2d(
|
|
in_channels=3, out_channels=16, kernel_size=3, padding=1
|
|
)
|
|
self.conv2 = torch.nn.Conv2d(
|
|
in_channels=16, out_channels=16, kernel_size=3, padding=1
|
|
)
|
|
self.conv3 = torch.nn.Conv2d(
|
|
in_channels=16, out_channels=16, kernel_size=3, padding=1
|
|
)
|
|
self.relu = torch.nn.ReLU()
|
|
self.maxpool = torch.nn.MaxPool2d(kernel_size=3)
|
|
|
|
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
|
a = self.conv1(x)
|
|
b = self.conv2(a)
|
|
c = a + self.constant_tensor
|
|
z = self.conv3(b + c)
|
|
return self.maxpool(self.relu(z))
|
|
|
|
inputs = (torch.randn(1, 3, 256, 256),)
|
|
gm, _ = torch._dynamo.export(M(torch.ones(1, 16, 256, 256)), aten_graph=True)(
|
|
*inputs
|
|
)
|
|
gm.graph.eliminate_dead_code()
|
|
|
|
module_partitions = get_source_partitions(
|
|
gm.graph, [torch.nn.Conv2d, torch.nn.ReLU, torch.nn.MaxPool2d]
|
|
)
|
|
|
|
self.assertEqual(len(module_partitions), 3)
|
|
self.assertEqual(len(module_partitions[torch.nn.Conv2d]), 3)
|
|
self.assertEqual(len(module_partitions[torch.nn.ReLU]), 1)
|
|
self.assertEqual(len(module_partitions[torch.nn.MaxPool2d]), 1)
|
|
|
|
self.assertFalse(
|
|
check_subgraphs_connected(
|
|
module_partitions[torch.nn.Conv2d][0],
|
|
module_partitions[torch.nn.ReLU][0],
|
|
)
|
|
)
|
|
self.assertFalse(
|
|
check_subgraphs_connected(
|
|
module_partitions[torch.nn.Conv2d][1],
|
|
module_partitions[torch.nn.ReLU][0],
|
|
)
|
|
)
|
|
self.assertTrue(
|
|
check_subgraphs_connected(
|
|
module_partitions[torch.nn.Conv2d][2],
|
|
module_partitions[torch.nn.ReLU][0],
|
|
)
|
|
)
|
|
self.assertFalse(
|
|
check_subgraphs_connected(
|
|
module_partitions[torch.nn.MaxPool2d][0],
|
|
module_partitions[torch.nn.ReLU][0],
|
|
)
|
|
)
|
|
self.assertTrue(
|
|
check_subgraphs_connected(
|
|
module_partitions[torch.nn.ReLU][0],
|
|
module_partitions[torch.nn.MaxPool2d][0],
|
|
)
|
|
)
|
|
|
|
@unittest.skipIf(not is_dynamo_supported(), "Dynamo not supported")
|
|
def test_module_partitioner_functional_conv_relu_conv(self):
|
|
class FunctionalConv2d(torch.nn.Module):
|
|
def __init__(self):
|
|
super().__init__()
|
|
self.stride = (1, 1)
|
|
self.padding = (0, 0)
|
|
self.dilation = (1, 1)
|
|
self.groups = 1
|
|
|
|
def forward(self, x, weight, bias):
|
|
return torch.nn.functional.conv2d(
|
|
x,
|
|
weight,
|
|
bias,
|
|
self.stride,
|
|
self.padding,
|
|
self.dilation,
|
|
self.groups,
|
|
)
|
|
|
|
class M(torch.nn.Module):
|
|
def __init__(self):
|
|
super().__init__()
|
|
self.conv1 = FunctionalConv2d()
|
|
self.conv2 = FunctionalConv2d()
|
|
|
|
def forward(self, x, weight, bias):
|
|
x = self.conv1(x, weight, bias)
|
|
x = torch.nn.functional.relu(x)
|
|
x = self.conv2(x, weight, bias)
|
|
return x
|
|
|
|
inputs = (torch.randn(1, 3, 5, 5), torch.rand(3, 3, 3, 3), torch.rand(3))
|
|
gm, _ = torch._dynamo.export(M(), aten_graph=True)(*inputs)
|
|
gm.graph.eliminate_dead_code()
|
|
|
|
module_partitions = get_source_partitions(
|
|
gm.graph, [torch.nn.functional.conv2d]
|
|
)
|
|
|
|
self.assertEqual(len(module_partitions), 1)
|
|
self.assertEqual(len(module_partitions[torch.nn.functional.conv2d]), 2)
|
|
|
|
@unittest.skipIf(not is_dynamo_supported(), "Dynamo not supported")
|
|
def test_module_partitioner_functional_linear_relu_linear(self):
|
|
class M(torch.nn.Module):
|
|
def __init__(self):
|
|
super().__init__()
|
|
|
|
def forward(self, x, weight, bias):
|
|
x = torch.nn.functional.linear(x, weight, bias)
|
|
x = torch.nn.functional.linear(x, weight, bias)
|
|
x = torch.nn.functional.relu(x)
|
|
x = torch.nn.functional.linear(x, weight, bias)
|
|
x = torch.nn.functional.linear(x, weight, bias)
|
|
x = torch.nn.functional.relu(x)
|
|
return x
|
|
|
|
inputs = (torch.randn(1, 5), torch.rand((5, 5)), torch.zeros(5))
|
|
gm, _ = torch._dynamo.export(M(), aten_graph=True)(*inputs)
|
|
gm.graph.eliminate_dead_code()
|
|
|
|
module_partitions = get_source_partitions(
|
|
gm.graph, [torch.nn.functional.linear, torch.nn.functional.relu]
|
|
)
|
|
|
|
self.assertEqual(len(module_partitions), 2)
|
|
self.assertEqual(len(module_partitions[torch.nn.functional.linear]), 4)
|
|
self.assertEqual(len(module_partitions[torch.nn.functional.relu]), 2)
|