mirror of
https://github.com/pytorch/pytorch.git
synced 2025-10-21 13:44:15 +08:00
Pull Request resolved: https://github.com/pytorch/pytorch/pull/164688 Approved by: https://github.com/pianpwk ghstack dependencies: #164432, #164434, #164514, #164646, #164647, #164649, #164687
403 lines
16 KiB
Python
403 lines
16 KiB
Python
"""Tensor layout operator implementations."""
|
|
|
|
import random
|
|
from typing import Optional
|
|
|
|
from torchfuzz.operators.base import Operator
|
|
from torchfuzz.tensor_fuzzer import fuzz_tensor_size, Spec, TensorSpec
|
|
|
|
|
|
class LayoutOperatorBase(Operator):
|
|
"""Base class for tensor layout operations."""
|
|
|
|
def can_produce(self, output_spec: Spec) -> bool:
|
|
"""All layout operations can only produce tensor outputs."""
|
|
return isinstance(output_spec, TensorSpec)
|
|
|
|
|
|
class ViewOperator(LayoutOperatorBase):
|
|
"""Operator for tensor.view() operation."""
|
|
|
|
def __init__(self):
|
|
"""Initialize ViewOperator."""
|
|
super().__init__("view")
|
|
|
|
@property
|
|
def torch_op_name(self) -> Optional[str]:
|
|
"""Return the torch operation name."""
|
|
return "torch.Tensor.view"
|
|
|
|
def can_produce(self, output_spec: Spec) -> bool:
|
|
"""ViewOperator can produce tensor outputs but not scalars due to element count constraints."""
|
|
if not isinstance(output_spec, TensorSpec):
|
|
return False
|
|
# Don't produce scalars since we can't guarantee input has exactly 1 element
|
|
return len(output_spec.size) > 0
|
|
|
|
def fuzz_inputs_specs(self, output_spec: Spec) -> list[Spec]:
|
|
"""Generate input spec for view operation."""
|
|
if not isinstance(output_spec, TensorSpec):
|
|
raise ValueError("ViewOperator can only produce TensorSpec outputs")
|
|
|
|
# Calculate total number of elements in output
|
|
output_numel = 1
|
|
for dim in output_spec.size:
|
|
output_numel *= dim
|
|
|
|
# Generate a compatible input shape with exactly the same number of elements
|
|
input_size = fuzz_tensor_size()
|
|
|
|
# Always ensure exact element count match
|
|
if output_numel == 0:
|
|
# For zero-sized output, create zero-sized input
|
|
input_size = tuple(list(input_size)[:-1] + [0])
|
|
else:
|
|
# Calculate input shape that gives exactly output_numel elements
|
|
# Try to use the fuzzed shape structure but adjust to match element count
|
|
if len(input_size) > 1:
|
|
# Keep all dims except last, adjust last to make total = output_numel
|
|
prefix_numel = 1
|
|
for dim in input_size[:-1]:
|
|
prefix_numel *= dim
|
|
|
|
if prefix_numel > 0 and output_numel % prefix_numel == 0:
|
|
last_dim = output_numel // prefix_numel
|
|
input_size = tuple(list(input_size)[:-1] + [last_dim])
|
|
else:
|
|
# Fallback: create a simple shape with exact element count
|
|
input_size = (output_numel,)
|
|
else:
|
|
# For single-dim input, just use the exact element count
|
|
input_size = (output_numel,)
|
|
|
|
# Create input tensor spec with contiguous stride for view compatibility
|
|
# .view() requires compatible memory layout, so use contiguous stride
|
|
input_stride = tuple()
|
|
if input_size:
|
|
# Calculate contiguous stride
|
|
stride = [1]
|
|
for i in range(len(input_size) - 1, 0, -1):
|
|
stride.insert(0, stride[0] * input_size[i])
|
|
input_stride = tuple(stride)
|
|
|
|
return [
|
|
TensorSpec(size=input_size, stride=input_stride, dtype=output_spec.dtype)
|
|
]
|
|
|
|
def codegen(
|
|
self, output_name: str, input_names: list[str], output_spec: Spec
|
|
) -> str:
|
|
"""Generate code for view operation."""
|
|
if not isinstance(output_spec, TensorSpec):
|
|
raise ValueError("ViewOperator can only produce TensorSpec outputs")
|
|
|
|
shape_str = str(list(output_spec.size))
|
|
# Ensure tensor is contiguous before view to avoid stride compatibility issues
|
|
return f"{output_name} = {input_names[0]}.contiguous().view({shape_str})"
|
|
|
|
|
|
class ReshapeOperator(LayoutOperatorBase):
|
|
"""Operator for torch.reshape() operation."""
|
|
|
|
def __init__(self):
|
|
"""Initialize ReshapeOperator."""
|
|
super().__init__("reshape")
|
|
|
|
@property
|
|
def torch_op_name(self) -> Optional[str]:
|
|
"""Return the torch operation name."""
|
|
return "torch.reshape"
|
|
|
|
def can_produce(self, output_spec: Spec) -> bool:
|
|
"""ReshapeOperator can produce tensor outputs but not scalars due to element count constraints."""
|
|
if not isinstance(output_spec, TensorSpec):
|
|
return False
|
|
# Don't produce scalars since we can't guarantee input has exactly 1 element
|
|
return len(output_spec.size) > 0
|
|
|
|
def fuzz_inputs_specs(self, output_spec: Spec) -> list[Spec]:
|
|
"""Generate input spec for reshape operation."""
|
|
if not isinstance(output_spec, TensorSpec):
|
|
raise ValueError("ReshapeOperator can only produce TensorSpec outputs")
|
|
|
|
# Calculate total number of elements in output
|
|
output_numel = 1
|
|
for dim in output_spec.size:
|
|
output_numel *= dim
|
|
|
|
# Generate a compatible input shape with exactly the same number of elements
|
|
input_size = fuzz_tensor_size()
|
|
|
|
# Always ensure exact element count match
|
|
if output_numel == 0:
|
|
# For zero-sized output, create zero-sized input
|
|
input_size = tuple(list(input_size)[:-1] + [0])
|
|
else:
|
|
# Calculate input shape that gives exactly output_numel elements
|
|
# Try to use the fuzzed shape structure but adjust to match element count
|
|
if len(input_size) > 1:
|
|
# Keep all dims except last, adjust last to make total = output_numel
|
|
prefix_numel = 1
|
|
for dim in input_size[:-1]:
|
|
prefix_numel *= dim
|
|
|
|
if prefix_numel > 0 and output_numel % prefix_numel == 0:
|
|
last_dim = output_numel // prefix_numel
|
|
input_size = tuple(list(input_size)[:-1] + [last_dim])
|
|
else:
|
|
# Fallback: create a simple shape with exact element count
|
|
input_size = (output_numel,)
|
|
else:
|
|
# For single-dim input, just use the exact element count
|
|
input_size = (output_numel,)
|
|
|
|
# Create input tensor spec with compatible stride
|
|
from torchfuzz.tensor_fuzzer import fuzz_valid_stride
|
|
|
|
input_stride = fuzz_valid_stride(input_size)
|
|
|
|
return [
|
|
TensorSpec(size=input_size, stride=input_stride, dtype=output_spec.dtype)
|
|
]
|
|
|
|
def codegen(
|
|
self, output_name: str, input_names: list[str], output_spec: Spec
|
|
) -> str:
|
|
"""Generate code for reshape operation."""
|
|
if not isinstance(output_spec, TensorSpec):
|
|
raise ValueError("ReshapeOperator can only produce TensorSpec outputs")
|
|
|
|
shape_str = str(list(output_spec.size))
|
|
return f"{output_name} = torch.reshape({input_names[0]}, {shape_str})"
|
|
|
|
|
|
class FlattenOperator(LayoutOperatorBase):
|
|
"""Operator for torch.flatten() operation."""
|
|
|
|
def __init__(self):
|
|
"""Initialize FlattenOperator."""
|
|
super().__init__("flatten")
|
|
|
|
@property
|
|
def torch_op_name(self) -> Optional[str]:
|
|
"""Return the torch operation name."""
|
|
return "torch.flatten"
|
|
|
|
def can_produce(self, output_spec: Spec) -> bool:
|
|
"""Flatten can only produce 1D tensors when using torch.flatten() without start_dim."""
|
|
if not isinstance(output_spec, TensorSpec):
|
|
return False
|
|
# Since we always use torch.flatten() without start_dim, we can only produce 1D tensors
|
|
return len(output_spec.size) == 1
|
|
|
|
def fuzz_inputs_specs(self, output_spec: Spec) -> list[Spec]:
|
|
"""Generate input spec for flatten operation."""
|
|
if not isinstance(output_spec, TensorSpec):
|
|
raise ValueError("FlattenOperator can only produce TensorSpec outputs")
|
|
|
|
# Calculate total number of elements in output
|
|
output_numel = 1
|
|
for dim in output_spec.size:
|
|
output_numel *= dim
|
|
|
|
# Generate a multi-dimensional input that can be flattened
|
|
if len(output_spec.size) == 1:
|
|
# For 1D output, generate any multi-dimensional input
|
|
input_size = fuzz_tensor_size()
|
|
# Ensure input has multiple dimensions
|
|
if len(input_size) < 2:
|
|
input_size = (2, 2) # Default multi-dim shape
|
|
else:
|
|
# For 2D output, generate input with more dimensions
|
|
input_size = fuzz_tensor_size()
|
|
if len(input_size) < 3:
|
|
input_size = (2, 2, 2) # Default 3D shape
|
|
|
|
# Adjust input size to match output element count
|
|
input_numel = 1
|
|
for dim in input_size:
|
|
input_numel *= dim
|
|
|
|
if input_numel != output_numel:
|
|
# Handle zero-sized tensors specially
|
|
if output_numel == 0:
|
|
# For zero-sized output, create zero-sized input
|
|
input_size = tuple(list(input_size)[:-1] + [0])
|
|
elif len(input_size) > 0 and output_numel > 0:
|
|
# Calculate input shape that gives exactly output_numel elements
|
|
prefix_numel = 1
|
|
for dim in input_size[:-1]:
|
|
prefix_numel *= dim
|
|
|
|
if prefix_numel > 0:
|
|
last_dim = output_numel // prefix_numel
|
|
# Ensure we get exactly output_numel elements
|
|
if last_dim * prefix_numel == output_numel:
|
|
input_size = tuple(list(input_size)[:-1] + [last_dim])
|
|
else:
|
|
# Fallback: create a simple shape with exact element count
|
|
input_size = (output_numel,)
|
|
else:
|
|
input_size = (output_numel,)
|
|
|
|
# Create input tensor spec
|
|
from torchfuzz.tensor_fuzzer import fuzz_valid_stride
|
|
|
|
input_stride = fuzz_valid_stride(tuple(input_size))
|
|
|
|
return [
|
|
TensorSpec(
|
|
size=tuple(input_size), stride=input_stride, dtype=output_spec.dtype
|
|
)
|
|
]
|
|
|
|
def codegen(
|
|
self, output_name: str, input_names: list[str], output_spec: Spec
|
|
) -> str:
|
|
"""Generate code for flatten operation."""
|
|
if not isinstance(output_spec, TensorSpec):
|
|
raise ValueError("FlattenOperator can only produce TensorSpec outputs")
|
|
|
|
# Always flatten all dimensions to avoid shape calculation errors
|
|
# This ensures the output matches the expected output_spec shape
|
|
return f"{output_name} = torch.flatten({input_names[0]})"
|
|
|
|
|
|
class SqueezeOperator(LayoutOperatorBase):
|
|
"""Operator for torch.squeeze() operation."""
|
|
|
|
def __init__(self):
|
|
"""Initialize SqueezeOperator."""
|
|
super().__init__("squeeze")
|
|
|
|
@property
|
|
def torch_op_name(self) -> Optional[str]:
|
|
"""Return the torch operation name."""
|
|
return "torch.squeeze"
|
|
|
|
def can_produce(self, output_spec: Spec) -> bool:
|
|
"""SqueezeOperator can only produce tensors WITHOUT singleton dimensions."""
|
|
if not isinstance(output_spec, TensorSpec):
|
|
return False
|
|
# Don't produce outputs with singleton dimensions since squeeze() removes ALL of them
|
|
return 1 not in output_spec.size
|
|
|
|
def fuzz_inputs_specs(self, output_spec: Spec) -> list[Spec]:
|
|
"""Generate input spec for squeeze operation."""
|
|
if not isinstance(output_spec, TensorSpec):
|
|
raise ValueError("SqueezeOperator can only produce TensorSpec outputs")
|
|
|
|
# Add exactly one singleton dimension to the output shape to create input
|
|
input_size = list(output_spec.size)
|
|
# Insert exactly one singleton dimension at a random position
|
|
pos = random.randint(0, len(input_size))
|
|
input_size.insert(pos, 1)
|
|
|
|
# Create input tensor spec
|
|
from torchfuzz.tensor_fuzzer import fuzz_valid_stride
|
|
|
|
input_stride = fuzz_valid_stride(tuple(input_size))
|
|
|
|
return [
|
|
TensorSpec(
|
|
size=tuple(input_size), stride=input_stride, dtype=output_spec.dtype
|
|
)
|
|
]
|
|
|
|
def codegen(
|
|
self, output_name: str, input_names: list[str], output_spec: Spec
|
|
) -> str:
|
|
"""Generate code for squeeze operation."""
|
|
# Always use squeeze() without dim specification to be safe
|
|
# Since we control input generation to add exactly one singleton dimension,
|
|
# and we preserve existing singleton dimensions in the output,
|
|
# this should work correctly
|
|
return f"{output_name} = torch.squeeze({input_names[0]})"
|
|
|
|
|
|
class UnsqueezeOperator(LayoutOperatorBase):
|
|
"""Operator for torch.unsqueeze() operation."""
|
|
|
|
def __init__(self):
|
|
"""Initialize UnsqueezeOperator."""
|
|
super().__init__("unsqueeze")
|
|
|
|
@property
|
|
def torch_op_name(self) -> Optional[str]:
|
|
"""Return the torch operation name."""
|
|
return "torch.unsqueeze"
|
|
|
|
def can_produce(self, output_spec: Spec) -> bool:
|
|
"""Unsqueeze produces tensors with at least one singleton dimension."""
|
|
if not isinstance(output_spec, TensorSpec):
|
|
return False
|
|
# Check if there's at least one singleton dimension
|
|
return 1 in output_spec.size
|
|
|
|
def fuzz_inputs_specs(self, output_spec: Spec) -> list[Spec]:
|
|
"""Generate input spec for unsqueeze operation."""
|
|
if not isinstance(output_spec, TensorSpec):
|
|
raise ValueError("UnsqueezeOperator can only produce TensorSpec outputs")
|
|
|
|
# For unsqueeze: output = input.shape[:dim] + (1,) + input.shape[dim:]
|
|
# So to get input from output, we need to remove exactly one singleton dimension
|
|
|
|
# Find a singleton dimension to remove (prefer last one for consistency)
|
|
input_size = list(output_spec.size)
|
|
singleton_idx = None
|
|
|
|
for i in range(len(input_size) - 1, -1, -1):
|
|
if input_size[i] == 1:
|
|
singleton_idx = i
|
|
break
|
|
|
|
if singleton_idx is not None:
|
|
# Remove the singleton dimension to create input shape
|
|
input_size.pop(singleton_idx)
|
|
else:
|
|
# This shouldn't happen given our can_produce constraint
|
|
raise ValueError(
|
|
"UnsqueezeOperator requires output to have at least one singleton dimension"
|
|
)
|
|
|
|
# Handle empty input (scalar case)
|
|
if not input_size:
|
|
input_size = tuple() # Scalar tensor
|
|
else:
|
|
input_size = tuple(input_size)
|
|
|
|
# Create input tensor spec
|
|
from torchfuzz.tensor_fuzzer import fuzz_valid_stride
|
|
|
|
if input_size:
|
|
input_stride = fuzz_valid_stride(input_size)
|
|
else:
|
|
input_stride = tuple() # Scalar has empty stride
|
|
|
|
return [
|
|
TensorSpec(size=input_size, stride=input_stride, dtype=output_spec.dtype)
|
|
]
|
|
|
|
def codegen(
|
|
self, output_name: str, input_names: list[str], output_spec: Spec
|
|
) -> str:
|
|
"""Generate code for unsqueeze operation."""
|
|
if not isinstance(output_spec, TensorSpec):
|
|
raise ValueError("UnsqueezeOperator can only produce TensorSpec outputs")
|
|
|
|
# Find the last singleton dimension position (matching fuzz_inputs_specs logic)
|
|
# This should be the same singleton dimension that we removed in fuzz_inputs_specs
|
|
last_singleton_idx = None
|
|
for i in range(len(output_spec.size) - 1, -1, -1):
|
|
if output_spec.size[i] == 1:
|
|
last_singleton_idx = i
|
|
break
|
|
|
|
if last_singleton_idx is not None:
|
|
dim = last_singleton_idx
|
|
else:
|
|
# Fallback: add at the end (shouldn't happen given our can_produce constraint)
|
|
dim = len(output_spec.size) - 1
|
|
|
|
return f"{output_name} = torch.unsqueeze({input_names[0]}, dim={dim})"
|