mirror of
https://github.com/pytorch/pytorch.git
synced 2025-10-21 05:34:18 +08:00
A previous typo on "placeholder" and related tests in quantization are fixed. Pull Request resolved: https://github.com/pytorch/pytorch/pull/135379 Approved by: https://github.com/jerryzh168
191 lines
7.2 KiB
Python
191 lines
7.2 KiB
Python
# Owner(s): ["oncall: quantization"]
|
|
|
|
import copy
|
|
import unittest
|
|
from collections import Counter
|
|
from typing import Dict
|
|
|
|
import torch
|
|
from torch._export import capture_pre_autograd_graph
|
|
from torch.ao.quantization import (
|
|
compare_results,
|
|
CUSTOM_KEY,
|
|
extract_results_from_loggers,
|
|
generate_numeric_debug_handle,
|
|
NUMERIC_DEBUG_HANDLE_KEY,
|
|
prepare_for_propagation_comparison,
|
|
)
|
|
from torch.ao.quantization.quantize_pt2e import convert_pt2e, prepare_pt2e
|
|
from torch.ao.quantization.quantizer.xnnpack_quantizer import (
|
|
get_symmetric_quantization_config,
|
|
XNNPACKQuantizer,
|
|
)
|
|
from torch.testing._internal.common_quantization import TestHelperModules
|
|
from torch.testing._internal.common_utils import IS_WINDOWS, TestCase
|
|
|
|
|
|
def _extract_debug_handles(model) -> Dict[torch.fx.Node, int]:
|
|
debug_handle_map: Dict[torch.fx.Node, int] = {}
|
|
|
|
for node in model.graph.nodes:
|
|
if (
|
|
CUSTOM_KEY in node.meta
|
|
and NUMERIC_DEBUG_HANDLE_KEY in node.meta[CUSTOM_KEY]
|
|
):
|
|
debug_handle_map[str(node)] = node.meta[CUSTOM_KEY][
|
|
NUMERIC_DEBUG_HANDLE_KEY
|
|
]
|
|
|
|
return debug_handle_map
|
|
|
|
|
|
def is_fbcode():
|
|
return not hasattr(torch.version, "git_version")
|
|
|
|
|
|
@unittest.skipIf(IS_WINDOWS, "Windows not yet supported for torch.compile")
|
|
class TestNumericDebugger(TestCase):
|
|
def test_simple(self):
|
|
m = TestHelperModules.Conv2dThenConv1d()
|
|
example_inputs = m.example_inputs()
|
|
m = torch.export.export(m, example_inputs)
|
|
generate_numeric_debug_handle(m)
|
|
unique_ids = set()
|
|
count = 0
|
|
for n in m.graph.nodes:
|
|
if CUSTOM_KEY in n.meta and NUMERIC_DEBUG_HANDLE_KEY in n.meta[CUSTOM_KEY]:
|
|
unique_ids.add(n.meta[CUSTOM_KEY][NUMERIC_DEBUG_HANDLE_KEY])
|
|
count += 1
|
|
self.assertEqual(len(unique_ids), count)
|
|
|
|
@unittest.skipIf(
|
|
is_fbcode(),
|
|
"fbcode changes the code path for `capture_pre_autograd_graph` "
|
|
"we can enable the test in fbcode after we remove `capture_pre_autograd_graph`",
|
|
)
|
|
def test_quantize_pt2e_preserve_handle(self):
|
|
m = TestHelperModules.Conv2dThenConv1d()
|
|
example_inputs = m.example_inputs()
|
|
m = capture_pre_autograd_graph(m, example_inputs)
|
|
generate_numeric_debug_handle(m)
|
|
|
|
quantizer = XNNPACKQuantizer().set_global(
|
|
get_symmetric_quantization_config(is_per_channel=False)
|
|
)
|
|
m = prepare_pt2e(m, quantizer)
|
|
debug_handle_map = _extract_debug_handles(m)
|
|
res_counter = Counter(debug_handle_map.values())
|
|
repeated_debug_handle_ids = [2, 3, 6]
|
|
# 3 ids were repeated because we copy over the id from node to its output observer
|
|
# torch.ops.aten.conv2d.default, torch.ops.aten.squeeze.dim and torch.ops.aten.conv1d.default
|
|
for dh_id in repeated_debug_handle_ids:
|
|
self.assertEqual(res_counter[dh_id], 2)
|
|
|
|
m(*example_inputs)
|
|
m = convert_pt2e(m)
|
|
debug_handle_map = _extract_debug_handles(m)
|
|
res_counter = Counter(debug_handle_map.values())
|
|
# same set of ids where repeated, because we copy over the id from observer/fake_quant to
|
|
# dequantize node
|
|
repeated_debug_handle_ids = [2, 3, 6]
|
|
for dh_id in repeated_debug_handle_ids:
|
|
self.assertEqual(res_counter[dh_id], 2)
|
|
|
|
def test_copy_preserve_handle(self):
|
|
m = TestHelperModules.Conv2dThenConv1d()
|
|
example_inputs = m.example_inputs()
|
|
m = torch.export.export(m, example_inputs)
|
|
generate_numeric_debug_handle(m)
|
|
|
|
debug_handle_map_ref = _extract_debug_handles(m)
|
|
|
|
m_copy = copy.copy(m)
|
|
debug_handle_map = _extract_debug_handles(m_copy)
|
|
|
|
self.assertEqual(debug_handle_map, debug_handle_map_ref)
|
|
|
|
def test_deepcopy_preserve_handle(self):
|
|
m = TestHelperModules.Conv2dThenConv1d()
|
|
example_inputs = m.example_inputs()
|
|
m = torch.export.export(m, example_inputs)
|
|
generate_numeric_debug_handle(m)
|
|
|
|
debug_handle_map_ref = _extract_debug_handles(m)
|
|
m_copy = copy.deepcopy(m)
|
|
debug_handle_map = _extract_debug_handles(m_copy)
|
|
|
|
self.assertEqual(debug_handle_map, debug_handle_map_ref)
|
|
|
|
@unittest.skip("All nodes' meta are preserved but get_attr nodes' meta are wrong.")
|
|
def test_re_export_preserve_handle(self):
|
|
m = TestHelperModules.Conv2dThenConv1d()
|
|
example_inputs = m.example_inputs()
|
|
m = capture_pre_autograd_graph(m, example_inputs)
|
|
generate_numeric_debug_handle(m)
|
|
|
|
debug_handle_map_ref = _extract_debug_handles(m)
|
|
m_export = capture_pre_autograd_graph(m, example_inputs)
|
|
debug_handle_map = _extract_debug_handles(m_export)
|
|
|
|
self.assertEqual(debug_handle_map, debug_handle_map_ref)
|
|
|
|
@unittest.skip(
|
|
"All nodes' meta are preserved but the first arg for the first node seems to be dropped"
|
|
)
|
|
def test_run_decompositions_preserve_handle(self):
|
|
m = TestHelperModules.Conv2dThenConv1d()
|
|
example_inputs = m.example_inputs()
|
|
m = torch.export.export(m, example_inputs)
|
|
generate_numeric_debug_handle(m)
|
|
|
|
debug_handle_map_ref = _extract_debug_handles(m)
|
|
|
|
m_copy = copy.copy(m)
|
|
m_copy = m_copy.run_decompositions()
|
|
debug_handle_map = _extract_debug_handles(m_copy)
|
|
|
|
# checking the map still has the same ids, the node may change
|
|
self.assertEqual(
|
|
set(debug_handle_map.values()), set(debug_handle_map_ref.values())
|
|
)
|
|
|
|
def test_prepare_for_propagation_comparison(self):
|
|
m = TestHelperModules.Conv2dThenConv1d()
|
|
example_inputs = m.example_inputs()
|
|
m = capture_pre_autograd_graph(m, example_inputs)
|
|
generate_numeric_debug_handle(m)
|
|
m_logger = prepare_for_propagation_comparison(m)
|
|
ref = m(*example_inputs)
|
|
res = m_logger(*example_inputs)
|
|
|
|
from torch.ao.quantization.pt2e._numeric_debugger import OutputLogger
|
|
|
|
loggers = [m for m in m_logger.modules() if isinstance(m, OutputLogger)]
|
|
self.assertEqual(len(loggers), 7)
|
|
self.assertTrue("conv2d" in [logger.node_name for logger in loggers])
|
|
self.assertEqual(res, ref)
|
|
|
|
def test_extract_results_from_loggers(self):
|
|
m = TestHelperModules.Conv2dThenConv1d()
|
|
example_inputs = m.example_inputs()
|
|
m = capture_pre_autograd_graph(m, example_inputs)
|
|
generate_numeric_debug_handle(m)
|
|
m_ref_logger = prepare_for_propagation_comparison(m)
|
|
|
|
quantizer = XNNPACKQuantizer().set_global(
|
|
get_symmetric_quantization_config(is_per_channel=False)
|
|
)
|
|
m = prepare_pt2e(m, quantizer)
|
|
m(*example_inputs)
|
|
m = convert_pt2e(m)
|
|
m_quant_logger = prepare_for_propagation_comparison(m)
|
|
|
|
m_ref_logger(*example_inputs)
|
|
m_quant_logger(*example_inputs)
|
|
ref_results = extract_results_from_loggers(m_ref_logger)
|
|
quant_results = extract_results_from_loggers(m_quant_logger)
|
|
comparison_results = compare_results(ref_results, quant_results)
|
|
for node_summary in comparison_results.values():
|
|
if len(node_summary.results) > 0:
|
|
self.assertGreaterEqual(node_summary.results[0].sqnr, 35)
|