Files
pytorch/torch/csrc/autograd/python_engine.cpp
2025-06-23 23:09:56 +00:00

524 lines
17 KiB
C++

#include <torch/csrc/autograd/python_engine.h>
#include <ATen/LegacyBatchedTensorImpl.h>
#include <ATen/LegacyVmapMode.h>
#include <c10/util/irange.h>
#include <pybind11/pybind11.h>
#include <torch/csrc/DynamicTypes.h>
#include <torch/csrc/THP.h>
#include <torch/csrc/autograd/edge.h>
#include <torch/csrc/autograd/engine.h>
#include <torch/csrc/autograd/function.h>
#include <torch/csrc/autograd/functions/basic_ops.h>
#include <torch/csrc/autograd/python_anomaly_mode.h>
#include <torch/csrc/autograd/python_cpp_function.h>
#include <torch/csrc/autograd/python_function.h>
#include <torch/csrc/autograd/python_saved_variable_hooks.h>
#include <torch/csrc/utils/pybind.h>
#include <torch/csrc/utils/pycfunction_helpers.h>
#ifndef _WIN32
#include <pthread.h>
#endif
#include <memory> // for unique_ptr
#include <utility>
using namespace torch::autograd;
struct THPEngine {
PyObject_HEAD
};
static bool _reinitialize_engine = false;
namespace torch::autograd::python {
PythonEngine::PythonEngine() = default;
Engine& PythonEngine::get_python_engine() {
static PythonEngine engine;
// This is "probably" thread-safe because the flag is set in a fork handler
// before any threads are created, and this function is only called with the
// GIL held. However, using fork + threads is playing with fire so this is
// more of a "best effort" thing. For example, if the fork occurs while the
// backwards threads hold a lock, we'll probably deadlock in the engine
// destructor.
if (_reinitialize_engine) {
engine.release_workers();
engine.~PythonEngine();
new (&engine) torch::autograd::python::PythonEngine();
_reinitialize_engine = false;
}
return engine;
}
PythonEngine::~PythonEngine() {
Engine::stop();
}
#if PY_MAJOR_VERSION == 3 && PY_MINOR_VERSION >= 9
#define IS_PYTHON_3_9_PLUS
#endif
void PythonEngine::thread_init(
int device,
const std::shared_ptr<ReadyQueue>& ready_queue,
bool should_increment) {
// Increment thread usage count before acquiring the GIL
if (should_increment) {
increment_non_reentrant_thread_count();
}
// Create a PyThreadState, but release the GIL. This lets
// pybind11::gil_scoped_acquire calls inside thread_main acquire the GIL
// without having to create a new PyThreadState each time.
#if defined(IS_PYTHON_3_9_PLUS)
auto gil = std::make_unique<pybind11::gil_scoped_acquire>();
#else
pybind11::gil_scoped_acquire gil;
#endif
pybind11::gil_scoped_release no_gil;
Engine::thread_init(device, ready_queue, false);
if (should_increment) {
// Decrement the count during shutdown if we incremented earlier.
decrement_non_reentrant_thread_count();
}
#if defined(IS_PYTHON_3_9_PLUS)
// Do not call PyEval_RestoreThread, PyThreadState_[Clear|DeleteCurrent] if
// runtime is finalizing
if (!Py_IsInitialized()) {
no_gil.disarm();
// TODO: call disarm once PyThreadState_Clear can safely be called from
// finalize NOTE: deploy.cpp calls `PyInterpreterState_Delete` to destruct
// PyThreadState, so avoid use-after-free here.
auto ptr = gil.release();
operator delete(ptr);
}
#endif
}
void PythonEngine::thread_on_exception(
const std::shared_ptr<GraphTask>& graph_task,
const std::shared_ptr<Node>& fn,
std::exception& e) {
// See Note [ Persisting PyErr state across autograd engine threads ]
auto python_err = dynamic_cast<python_error*>(&e);
if (python_err) {
python_err->persist();
}
Engine::thread_on_exception(graph_task, fn, e);
}
std::unique_ptr<AnomalyMetadata> PythonEngine::make_anomaly_metadata() {
return std::make_unique<PyAnomalyMetadata>();
}
std::unique_ptr<SavedVariableHooks> PythonEngine::
get_default_saved_variable_hooks() {
return PyDefaultSavedVariableHooks::get_hooks();
}
variable_list PythonEngine::execute(
const edge_list& roots,
const variable_list& inputs,
bool keep_graph,
bool create_graph,
bool accumulate_grad,
const edge_list& outputs) {
TORCH_CHECK(
!PyGILState_Check(),
"The autograd engine was called while holding the GIL. If you are using the C++ "
"API, the autograd engine is an expensive operation that does not require the "
"GIL to be held so you should release it with 'pybind11::gil_scoped_release no_gil;'"
". If you are not using the C++ API, please report a bug to the pytorch team.")
try {
return Engine::execute(
roots, inputs, keep_graph, create_graph, accumulate_grad, outputs);
} catch (python_error& e) {
e.restore();
throw;
}
}
c10::intrusive_ptr<at::ivalue::Future> PythonEngine::execute_with_graph_task(
const std::shared_ptr<GraphTask>& graph_task,
std::shared_ptr<Node> graph_root,
InputBuffer&& input_buffer) {
try {
return Engine::execute_with_graph_task(
graph_task, std::move(graph_root), std::move(input_buffer));
} catch (python_error& e) {
pybind11::gil_scoped_acquire gil;
if (!PyErr_Occurred()) {
// Set the error indicator only if it is not set already.
e.restore();
}
throw;
}
}
} // namespace torch::autograd::python
static Edge parseGradientEdge(PyObject* obj, int64_t index) {
PyObject* grad_fn = PyTuple_GetItem(obj, 0);
auto output_nr = THPUtils_unpackLong(PyTuple_GetItem(obj, 1));
std::shared_ptr<torch::autograd::Node> grad_fn_sp;
if (THPFunction_Check(grad_fn)) {
grad_fn_sp = ((THPFunction*)grad_fn)->cdata.lock();
} else if (THPCppFunction_Check(grad_fn)) {
grad_fn_sp = ((THPCppFunction*)grad_fn)->cdata;
} else {
TORCH_CHECK(
false,
"GradientEdge's first object must be an autograd.graph.Node "
"but got ",
THPUtils_typename(grad_fn));
}
return Edge(grad_fn_sp, output_nr);
}
// Implementation of torch._C._EngineBase.run_backward
static PyObject* THPEngine_run_backward(
PyObject* self,
PyObject* args,
PyObject* kwargs) {
HANDLE_TH_ERRORS
PyObject* tensors = nullptr;
PyObject* grad_tensors = nullptr;
unsigned char keep_graph = 0;
unsigned char create_graph = 0;
PyObject* inputs = nullptr;
unsigned char allow_unreachable = 0;
unsigned char accumulate_grad =
0; // Indicate whether to accumulate grad into leaf Tensors or capture
constexpr const char* accepted_kwargs[] = {
"tensors",
"grad_tensors",
"keep_graph",
"create_graph",
"inputs",
"allow_unreachable",
"accumulate_grad",
nullptr};
if (!PyArg_ParseTupleAndKeywords(
args,
kwargs,
"OObb|Obb",
// NOLINTNEXTLINE(cppcoreguidelines-pro-type-const-cast,-warnings-as-errors)
const_cast<char**>(accepted_kwargs),
&tensors,
&grad_tensors,
&keep_graph,
&create_graph,
&inputs,
&allow_unreachable,
&accumulate_grad))
return nullptr;
TORCH_CHECK(
PyTuple_Check(tensors),
"tensors argument is expected to "
"be a tuple, but got ",
THPUtils_typename(tensors));
TORCH_CHECK(
PyTuple_Check(grad_tensors),
"grad_tensors argument is "
"expected to be a tuple, but got ",
THPUtils_typename(grad_tensors));
Py_ssize_t num_tensors = PyTuple_GET_SIZE(tensors);
Py_ssize_t num_gradients = PyTuple_GET_SIZE(grad_tensors);
TORCH_CHECK(
num_tensors == num_gradients,
"got ",
num_tensors,
" tensors and ",
num_gradients,
" gradients");
// The user either called autograd.backward(...) or autograd.grad(...) to get
// here
bool backward_api_called = accumulate_grad;
TORCH_CHECK(
!backward_api_called || at::impl::VmapMode::current_vmap_level() == 0,
"backward() called inside torch.vmap. This is not supported, "
"please call backward() outside torch.vmap or instead use "
"torch.autograd.grad inside torch.vmap");
edge_list roots;
roots.reserve(num_tensors);
variable_list grads;
grads.reserve(num_tensors);
for (const auto i : c10::irange(num_tensors)) {
PyObject* _tensor = PyTuple_GET_ITEM(tensors, i);
Edge gradient_edge; // Temporary variable to hold the gradient edge
std::optional<at::Tensor> mb_output;
if (THPVariable_Check(_tensor)) {
mb_output = THPVariable_Unpack(_tensor);
TORCH_CHECK(
!isBatchedTensor(mb_output.value()),
"torch.autograd.grad(outputs, inputs, grad_outputs) called inside ",
"torch.vmap. We do not support the case where any outputs are ",
"vmapped tensors (output ",
i,
" is being vmapped over). Please "
"call autograd.grad() outside torch.vmap or file a bug report "
"with your use case.");
gradient_edge = torch::autograd::impl::gradient_edge(mb_output.value());
} else if (PyObject_IsInstance(_tensor, THPGradientEdgeClass)) {
gradient_edge = parseGradientEdge(_tensor, i);
} else {
TORCH_CHECK(
false,
"element ",
i,
" of tensors tuple is neither a Tensor nor a GradientEdge");
}
TORCH_CHECK(
gradient_edge.function,
"element ",
i,
" of tensors does not require grad and does not have a grad_fn");
roots.push_back(std::move(gradient_edge));
PyObject* grad = PyTuple_GET_ITEM(grad_tensors, i);
if (THPVariable_Check(grad)) {
const Variable& grad_var = THPVariable_Unpack(grad);
if (grad_var.has_names()) {
TORCH_WARN(
"Autograd was passed a named grad tensor with dims ",
grad_var.names(),
". Autograd does not yet support named tensor semantics, so all names ",
"will be ignored. In practice all computed gradients will still be correct "
"according to regular tensor semantics.");
}
grads.push_back(grad_var);
} else {
TORCH_CHECK(
grad == Py_None,
"element ",
i,
" of gradients tuple is not a Tensor or None");
TORCH_CHECK(
mb_output.has_value(),
"element ",
i,
" of gradients tuple is None, but the corresponding output is a GradientEdge."
"This is not supported.");
TORCH_CHECK(
!mb_output.value().requires_grad(),
"element ",
i,
" of gradients tuple is None, but the corresponding Tensor requires grad");
}
}
std::vector<Edge> output_edges;
if (inputs != nullptr) {
TORCH_CHECK(
PyTuple_CheckExact(inputs), "inputs to run_backward must be a tuple");
int num_inputs = PyTuple_GET_SIZE(inputs);
output_edges.reserve(num_inputs);
for (const auto i : c10::irange(num_inputs)) {
PyObject* input = PyTuple_GET_ITEM(inputs, i);
if (THPVariable_Check(input)) {
const auto& tensor = THPVariable_Unpack(input);
TORCH_CHECK(
!isBatchedTensor(tensor),
"torch.autograd.grad(outputs, inputs, grad_outputs) called inside ",
"torch.vmap. We do not support the case where any inputs are ",
"vmapped tensors (input ",
i,
" is being vmapped over). Please "
"call autograd.grad() outside torch.vmap or file a bug report "
"with your use case.")
const auto output_nr = tensor.output_nr();
auto grad_fn = tensor.grad_fn();
if (!grad_fn) {
grad_fn = torch::autograd::impl::try_get_grad_accumulator(tensor);
}
if (accumulate_grad) {
tensor.retain_grad();
}
TORCH_CHECK(
tensor.requires_grad(),
"One of the differentiated Tensors does not require grad");
if (!grad_fn) {
// NOTE [ Autograd Unreachable Input ]
// Since input has no grad_accumulator, its guaranteed to be
// unreachable. We initialize an edge pointing to a non-nullptr Node
// so nodes in the graph (e.g., mul when an operand is scalar) that
// have edges pointing to nullptr don't get erroneously assigned
// `needed = True` in exec_info.
output_edges.emplace_back(std::make_shared<Identity>(), 0);
} else {
output_edges.emplace_back(grad_fn, output_nr);
}
} else if (PyObject_IsInstance(input, THPGradientEdgeClass)) {
output_edges.emplace_back(parseGradientEdge(input, i));
} else {
TORCH_CHECK(
false,
"all inputs have to be Tensors or GradientEdges, but got ",
THPUtils_typename(input));
}
}
}
variable_list outputs;
{
pybind11::gil_scoped_release no_gil;
auto& engine = python::PythonEngine::get_python_engine();
outputs = engine.execute(
roots, grads, keep_graph, create_graph, accumulate_grad, output_edges);
}
if (!backward_api_called && inputs != nullptr) {
int num_inputs = PyTuple_GET_SIZE(inputs);
THPObjectPtr py_outputs{PyTuple_New(num_inputs)};
if (!py_outputs)
return nullptr;
for (const auto i : c10::irange(num_inputs)) {
TORCH_CHECK(
allow_unreachable || outputs[i].defined(),
"One of the "
"differentiated Tensors appears to not have been used "
"in the graph. Set allow_unused=True if this is the "
"desired behavior.");
PyTuple_SET_ITEM(py_outputs.get(), i, THPVariable_Wrap(outputs[i]));
}
return py_outputs.release();
} else {
Py_RETURN_NONE;
}
END_HANDLE_TH_ERRORS
}
static PyObject* THPEngine_queue_callback(PyObject* self, PyObject* _callback) {
HANDLE_TH_ERRORS
auto& engine = python::PythonEngine::get_python_engine();
std::shared_ptr<PyObject> callback(_callback, [](PyObject* obj) {
pybind11::gil_scoped_acquire gil;
Py_DECREF(obj);
});
Py_INCREF(_callback);
engine.queue_callback([callback]() {
pybind11::gil_scoped_acquire gil;
THPObjectPtr result{PyObject_CallFunctionObjArgs(callback.get(), nullptr)};
if (!result) {
// Note [ Persisting PyErr state across autograd engine threads ]
//
// Since the autograd engine is multi-threaded, and Python error state is
// local to each thread, it must preserve the python error from the worker
// thread and rethrow it as-is in the calling thread. This is done via
// persisting the error in the two places that can encounter Python
// errors: (1) evaluate function and (2) queued callbacks.
//
// TODO: the engine is not actually responsible for persisting the error
// in the custom autograd Function case today! See the note above
// `raise_python_error()` function in python_function.cpp and
// python_hooks.cpp for more details. Persisting an extra time in the
// engine is fine because doing so is a no-op when the python_error has
// already been persisted.
python_error err;
err.persist();
throw std::move(err);
}
});
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
static PyObject* THPEngine_is_checkpoint_valid(
PyObject* self,
PyObject* noargs) {
HANDLE_TH_ERRORS
auto& engine = python::PythonEngine::get_python_engine();
if (engine.is_checkpoint_valid()) {
Py_RETURN_TRUE;
} else {
Py_RETURN_FALSE;
}
END_HANDLE_TH_ERRORS
}
static PyObject* THPEngine_new(
PyTypeObject* type,
PyObject* args,
PyObject* kwargs) {
return type->tp_alloc(type, 0);
}
// NOLINTNEXTLINE(cppcoreguidelines-avoid-c-arrays,modernize-avoid-c-arrays,cppcoreguidelines-avoid-non-const-global-variables)
static struct PyMethodDef THPEngine_methods[] = {
{"run_backward",
castPyCFunctionWithKeywords(THPEngine_run_backward),
METH_VARARGS | METH_KEYWORDS,
nullptr},
{"queue_callback", THPEngine_queue_callback, METH_O, nullptr},
{"is_checkpoint_valid",
THPEngine_is_checkpoint_valid,
METH_NOARGS,
nullptr},
{nullptr}};
static PyTypeObject THPEngineType = {
PyVarObject_HEAD_INIT(nullptr, 0)
"torch._C._EngineBase", /* tp_name */
sizeof(THPEngine), /* tp_basicsize */
0, /* tp_itemsize */
nullptr, /* tp_dealloc */
0, /* tp_vectorcall_offset */
nullptr, /* tp_getattr */
nullptr, /* tp_setattr */
nullptr, /* tp_reserved */
nullptr, /* tp_repr */
nullptr, /* tp_as_number */
nullptr, /* tp_as_sequence */
nullptr, /* tp_as_mapping */
nullptr, /* tp_hash */
nullptr, /* tp_call */
nullptr, /* tp_str */
nullptr, /* tp_getattro */
nullptr, /* tp_setattro */
nullptr, /* tp_as_buffer */
// NOLINTNEXTLINE(misc-redundant-expression)
Py_TPFLAGS_DEFAULT | Py_TPFLAGS_BASETYPE, /* tp_flags */
nullptr, /* tp_doc */
nullptr, /* tp_traverse */
nullptr, /* tp_clear */
nullptr, /* tp_richcompare */
0, /* tp_weaklistoffset */
nullptr, /* tp_iter */
nullptr, /* tp_iternext */
THPEngine_methods, /* tp_methods */
nullptr, /* tp_members */
nullptr, /* tp_getset */
nullptr, /* tp_base */
nullptr, /* tp_dict */
nullptr, /* tp_descr_get */
nullptr, /* tp_descr_set */
0, /* tp_dictoffset */
nullptr, /* tp_init */
nullptr, /* tp_alloc */
THPEngine_new /* tp_new */
};
static void child_atfork() {
_reinitialize_engine = true;
}
bool THPEngine_initModule(PyObject* module) {
#ifndef _WIN32
if (pthread_atfork(nullptr, nullptr, child_atfork) != 0) {
throw std::runtime_error("unable to set pthread_atfork handler");
}
#endif
if (PyType_Ready(&THPEngineType) < 0)
return false;
Py_INCREF(&THPEngineType);
PyModule_AddObject(module, "_ImperativeEngine", (PyObject*)&THPEngineType);
set_default_engine_stub(python::PythonEngine::get_python_engine);
return true;
}