Files
pytorch/torch/csrc/autograd/python_cpp_function.cpp
cyy 8fa81a6066 Enable misc-use-internal-linkage check and apply fixes (#148948)
Enables clang-tidy rule [`misc-use-internal-linkage`](https://clang.llvm.org/extra/clang-tidy/checks/misc/use-internal-linkage.html). This new check was introduced in Clang-Tidy 18 and is available due to recent update of Clang-Tidy 19.

The check marks functions and variables used only in the translation unit as static. Therefore undesired symbols are not leaked into other units, more link time optimisations are possible and the resulting binaries may be smaller.

The detected violations were mostly fixed by using static. In other cases, the symbols were indeed consumed by others files, then their declaring headers were included. Still some declarations were wrong and have been fixed.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/148948
Approved by: https://github.com/Skylion007
2025-03-12 14:22:56 +00:00

402 lines
12 KiB
C++

#include <c10/util/irange.h>
#include <torch/csrc/autograd/python_cpp_function.h>
#include <torch/csrc/python_headers.h>
#include <cstdio>
#include <memory>
#include <typeindex>
#include <unordered_map>
#include <pybind11/pybind11.h>
#include <torch/csrc/DynamicTypes.h>
#include <torch/csrc/Exceptions.h>
#include <torch/csrc/autograd/python_anomaly_mode.h>
#include <torch/csrc/autograd/python_function.h>
#include <torch/csrc/autograd/python_hook.h>
#include <torch/csrc/autograd/python_variable.h>
#include <torch/csrc/utils/pybind.h>
#include <torch/csrc/utils/python_numbers.h>
#include <torch/csrc/utils/python_strings.h>
using namespace torch::autograd;
namespace torch::autograd {
namespace {
PyObject* THPCppFunction_call(
PyObject* self,
PyObject* args,
PyObject* kwargs) {
if (kwargs && PyDict_Size(kwargs) != 0) {
return PyErr_Format(PyExc_TypeError, "keyword arguments are not supported");
}
auto num_inputs = PyTuple_GET_SIZE(args);
auto num_inputs_required = ((THPCppFunction*)self)->cdata->num_inputs();
if (num_inputs != num_inputs_required) {
return PyErr_Format(
PyExc_TypeError,
"expected %d arguments, got %d instead",
num_inputs_required,
num_inputs);
}
variable_list vars(num_inputs);
for (int i = 0; i != num_inputs; ++i) {
PyObject* arg = PyTuple_GET_ITEM(args, i);
if (arg == Py_None) {
continue;
}
if (!THPVariable_Check(arg)) {
return PyErr_Format(PyExc_TypeError, "argument %d is not a Variable", i);
}
vars[i] = THPVariable_Unpack(arg);
}
variable_list output;
HANDLE_TH_ERRORS {
pybind11::gil_scoped_release nogil;
output = (*((THPCppFunction*)self)->cdata)(std::move(vars));
}
END_HANDLE_TH_ERRORS
auto num_outputs = output.size();
if (num_outputs == 1) {
// assume we want to unpack one element tuples for now
return THPVariable_Wrap(output[0]);
}
THPObjectPtr tuple(PyTuple_New(static_cast<Py_ssize_t>(num_outputs)));
for (size_t i = 0; i != num_outputs; ++i) {
PyTuple_SET_ITEM(tuple.get(), i, THPVariable_Wrap(output[i]));
}
return tuple.release();
}
int THPCppFunction_traverse(PyObject* self, visitproc visit, void* arg) {
if ((((THPCppFunction*)self)->cdata).use_count() == 1) {
// The fields traversed below are owned by the cpp grad_fn, which we own a
// reference to. We should only them traverse however if we are the only
// owner of the grad_fn, otherwise we risk prematurely gc'ing the grad_fn.
//
// See: https://github.com/pytorch/pytorch/issues/102174
auto& fn = *((THPCppFunction*)self)->cdata;
for (const auto& hook : fn.tensor_pre_hooks()) {
if (auto pyhook = dynamic_cast<PyFunctionTensorPreHook*>(hook.get())) {
Py_VISIT(pyhook->dict);
}
}
// NOTE [retains_grad_hook PyObject traversal]
// In theory this shouldn't be necessary, because retains_grad_hooks should
// not contain any PyFunctionTensorPreHooks. The alternative is to have a
// check that actually guarantees this.
for (const auto& pair : fn.retains_grad_hooks()) {
if (auto pyhook =
dynamic_cast<PyFunctionTensorPreHook*>(pair.second.get())) {
Py_VISIT(pyhook->dict);
}
}
for (const auto& hook : fn.pre_hooks()) {
if (auto pyhook = dynamic_cast<PyFunctionPreHook*>(hook.get())) {
Py_VISIT(pyhook->dict);
}
}
for (const auto& hook : fn.post_hooks()) {
if (auto pyhook = dynamic_cast<PyFunctionPostHook*>(hook.get())) {
Py_VISIT(pyhook->dict);
}
}
}
return 0;
}
int THPCppFunction_clear(PyObject* self) {
auto f = (THPCppFunction*)self;
// Remove the weak ref of the c++ object if it exist
if (f->cdata) {
f->cdata->set_pyobj(nullptr);
}
f->cdata.reset();
return 0;
}
void THPCppFunction_dealloc(PyObject* self) {
PyObject_GC_UnTrack(self);
THPCppFunction_clear(self);
((THPCppFunction*)self)->cdata.~shared_ptr();
Py_TYPE(self)->tp_free(self);
}
} // namespace
PyObject* THPCppFunction_next_functions(PyObject* self, void* _unused) {
auto cdata = reinterpret_cast<const THPCppFunction*>(self)->cdata;
const auto num_next = cdata->num_outputs();
THPObjectPtr py_functions(PyTuple_New(num_next));
if (!py_functions)
return nullptr;
for (const auto i : c10::irange(num_next)) {
auto& c_tuple = cdata->next_edge(i);
THPObjectPtr tuple(PyTuple_New(2));
if (!tuple)
return nullptr;
PyObject* py_fn = functionToPyObject(c_tuple.function);
if (!py_fn)
return nullptr;
PyTuple_SET_ITEM(tuple.get(), 0, py_fn);
PyObject* py_idx = THPUtils_packUInt32(c_tuple.input_nr);
if (!py_idx)
return nullptr;
PyTuple_SET_ITEM(tuple.get(), 1, py_idx);
PyTuple_SET_ITEM(py_functions.get(), i, tuple.release());
}
return py_functions.release();
}
PyObject* THPCppFunction_metadata(PyObject* self, void* _unused) {
auto* metadata =
static_cast<PyAnomalyMetadata*>(
reinterpret_cast<THPCppFunction*>(self)->cdata->metadata())
->dict();
Py_XINCREF(metadata);
return metadata;
}
PyObject* THPCppFunction_requires_grad(PyObject* self, void* unused) {
Py_RETURN_TRUE;
}
PyObject* THPCppFunction_register_hook_dict(PyObject* self, PyObject* _var) {
if (!THPVariable_Check(_var)) {
return PyErr_Format(
PyExc_TypeError, "_register_hook_dict expected a variable");
}
auto var = (THPVariable*)_var;
auto& fn = *((THPCppFunction*)self)->cdata;
fn.add_tensor_pre_hook(std::make_unique<PyFunctionTensorPreHook>(
var->backward_hooks, THPVariable_Unpack(var).output_nr()));
Py_RETURN_NONE;
}
PyObject* THPCppFunction_register_hook(PyObject* self, PyObject* hook) {
auto& fn = *((THPCppFunction*)self)->cdata;
return registerFunctionHook(fn, hook);
}
PyObject* THPCppFunction_register_prehook(PyObject* self, PyObject* hook) {
auto& fn = *((THPCppFunction*)self)->cdata;
return registerFunctionPreHook(fn, hook);
}
PyObject* THPCppFunction_name(PyObject* self, PyObject* noargs) {
auto& fn = *((THPCppFunction*)self)->cdata;
return THPUtils_packString(fn.name());
}
PyObject* THPCppFunction_sequence_nr(PyObject* self, PyObject* noargs) {
auto& fn = *((THPCppFunction*)self)->cdata;
return THPUtils_packUInt64(fn.sequence_nr());
}
static PyObject* THPCppFunction_set_sequence_nr(
PyObject* self,
PyObject* sequence_nr) {
HANDLE_TH_ERRORS
auto& fn = *((THPCppFunction*)self)->cdata;
fn.set_sequence_nr(THPUtils_unpackUInt64(sequence_nr));
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
PyObject* THPCppFunction_input_metadata(PyObject* self, void* closure) {
HANDLE_TH_ERRORS;
auto& fn = *((THPCppFunction*)self)->cdata;
const auto num_inputs =
fn.num_inputs(); // Assuming there's a method to get the number of inputs
THPObjectPtr list(PyTuple_New(num_inputs));
if (!list) {
return nullptr;
}
for (size_t i = 0; i < num_inputs; ++i) {
const auto& metadata = fn.input_metadata(i);
THPObjectPtr item(py::cast(metadata).release().ptr());
if (!item) {
return nullptr;
}
PyTuple_SET_ITEM(list.get(), i, item.release());
}
return list.release();
END_HANDLE_TH_ERRORS
}
// NOLINTNEXTLINE(cppcoreguidelines-avoid-c-arrays,cppcoreguidelines-avoid-non-const-global-variables,modernize-avoid-c-arrays)
static struct PyMethodDef default_methods[] = {
THP_FUNCTION_DEFAULT_METHODS,
{nullptr}};
// NOLINTNEXTLINE(cppcoreguidelines-avoid-c-arrays,cppcoreguidelines-avoid-non-const-global-variables,modernize-avoid-c-arrays)
static struct PyGetSetDef default_properties[] = {
THP_FUNCTION_DEFAULT_PROPERTIES,
{nullptr}};
PyTypeObject* _initFunctionPyTypeObject(
PyTypeObject& type,
const char* name,
PyGetSetDef* function_properties,
PyMethodDef* function_methods) {
type.ob_base = {
PyObject_HEAD_INIT(nullptr)
0};
// NOLINTNEXTLINE(misc-redundant-expression)
type.tp_flags = Py_TPFLAGS_DEFAULT | Py_TPFLAGS_HAVE_GC;
type.tp_name = name;
type.tp_basicsize = sizeof(THPCppFunction);
type.tp_call = THPCppFunction_call;
type.tp_methods = function_methods ? function_methods : default_methods;
type.tp_getset =
function_properties ? function_properties : default_properties;
type.tp_dealloc = THPCppFunction_dealloc;
type.tp_traverse = THPCppFunction_traverse;
type.tp_clear = THPCppFunction_clear;
if (PyType_Ready(&type) < 0) {
auto msg = std::string("Unable to instantiate PyTypeObject for ") + name;
throw std::runtime_error(msg);
}
return &type;
}
static std::unordered_map<std::type_index, THPObjectPtr> cpp_function_types_map;
static std::unordered_set<PyTypeObject*> cpp_function_types_set;
struct DefaultFunctionType {
DefaultFunctionType() : type() {
_initFunctionPyTypeObject(type, "CppFunction", nullptr, nullptr);
}
PyTypeObject type;
};
static PyTypeObject* get_default_type() {
static DefaultFunctionType default_type;
return &(default_type.type);
}
PyObject* functionToPyObject(const std::shared_ptr<Node>& cdata) {
if (!cdata) {
Py_RETURN_NONE;
}
if (auto pfw = dynamic_cast<PyNode*>(cdata.get())) {
PyObject* obj = pfw->obj;
Py_INCREF(obj);
return obj;
}
if (cdata->pyobj()) {
Py_INCREF(cdata->pyobj());
} else {
auto& fn = *cdata;
auto it = cpp_function_types_map.find(std::type_index(typeid(fn)));
PyTypeObject* type = nullptr;
if (it == cpp_function_types_map.end()) {
type = get_default_type();
} else {
type = (PyTypeObject*)it->second.get();
}
THPObjectPtr obj(type->tp_alloc(type, 0));
if (!obj)
return nullptr;
THPCppFunction* f = (THPCppFunction*)obj.get();
new (&f->cdata) std::shared_ptr<Node>(cdata);
// No INCREF here as we only have a weak reference
cdata->set_pyobj(obj.release());
}
return cdata->pyobj();
}
void registerCppFunction(const std::type_info& type, PyTypeObject* pytype) {
Py_INCREF((PyObject*)pytype);
cpp_function_types_map[std::type_index(type)] =
THPObjectPtr((PyObject*)pytype);
cpp_function_types_set.insert(pytype);
}
bool THPCppFunction_Check(PyObject* obj) {
THPObjectPtr type = THPObjectPtr(PyObject_Type(obj));
if ((PyTypeObject*)type.get() == get_default_type()) {
return true;
}
if (cpp_function_types_set.find((PyTypeObject*)type.get()) ==
cpp_function_types_set.end()) {
return false;
} else {
return true;
}
}
static PyObject* callRegisterFn(PyObject* dict, PyObject* hook) {
THPObjectPtr register_fn(
PyObject_GetAttrString(THPFunctionClass, "_register_hook"));
if (!register_fn) {
return nullptr;
}
THPObjectPtr res(
PyObject_CallFunctionObjArgs(register_fn.get(), dict, hook, nullptr));
if (!res) {
return nullptr;
}
return res.release();
}
PyObject* registerFunctionHook(Node& fn, PyObject* hook) {
PyObject* dict = Py_None;
for (const auto& hook : fn.post_hooks()) {
if (auto pyhook = dynamic_cast<PyFunctionPostHook*>(hook.get())) {
dict = pyhook->dict;
break;
}
}
THPObjectPtr res{callRegisterFn(dict, hook)};
if (!res) {
return nullptr;
}
if (dict == Py_None) {
dict = PyTuple_GET_ITEM(res.get(), 0);
fn.add_post_hook(std::make_unique<PyFunctionPostHook>(dict));
}
PyObject* handle = PyTuple_GET_ITEM(res.get(), 1);
Py_INCREF(handle);
return handle;
}
// This is almost a copy of the function above except post -> pre
PyObject* registerFunctionPreHook(Node& fn, PyObject* hook) {
PyObject* dict = Py_None;
for (const auto& hook : fn.pre_hooks()) {
if (auto pyhook = dynamic_cast<PyFunctionPreHook*>(hook.get())) {
dict = pyhook->dict;
break;
}
}
THPObjectPtr res{callRegisterFn(dict, hook)};
if (!res) {
return nullptr;
}
if (dict == Py_None) {
dict = PyTuple_GET_ITEM(res.get(), 0);
fn.add_pre_hook(std::make_unique<PyFunctionPreHook>(dict));
}
PyObject* handle = PyTuple_GET_ITEM(res.get(), 1);
Py_INCREF(handle);
return handle;
}
} // namespace torch::autograd