Files
pytorch/torch/_inductor/config.py
Laith Sakka c8ab9b06a2 Redesign custom op functionlaization for better re-inplace (#134409)
- The new implementation (auto_functionalized_v2) is enabled by default but can be disable
 using an inductor flag.
- In export mode the old implementation is used.

**Motiviation**
Previous functionalization fails to re-inplace arguments when they are view over other tensors.
see issue https://github.com/pytorch/pytorch/issues/131192
The new functionalization is easier to re-inplace for views.

**A) Functionalizations pass**
consider a program:

```

func(t)
    x = t[0]
    y = t[1]
    foo(x, y) # custom operator with x, y mutable
    return (x, y, t)
```

- To functionalize `foo` we generate a function that operates on the base tensors of the inputs;  (x.base() and y.base())
and record how to regenerates the views out of the base for argument x by recording ```ViewInfo=(x.base(), x.size(), x.stride, x,storage_offset())```

- Due to some limitations on the torch.export arguments format, we have to generate alot of arguments, but this is something we can simplify in the future, for the example above we get the following function.

   ```
   auto_functionalized = torch.ops.higher_order.auto_functionalized(torch.ops.mylib.foo.default,
     _x_base_index = 0, _x_size = (), _x_stride = (), _x_storage_offset = 0 ,
     _y_base_index = 0,_y_size = (), _y_stride = (), _y_storage_offset = 1   ,
     _all_bases = [arg0_1])
   ```
 -  In the code above:
        - _all_bases[t]: refers to a unique set of bases for all foo arguments.
        - for each argument x we have _x_base_index, _x_size, _x_stride, _x_storage_offset that can be used to (1)  regenerate x from _all_bases[_x_base_index] or a copy of a the base.

-  the output of auto_functionalized is foo output , followed by x tensors one for each base in  _all_bases, that is a copy of the base tensor after observing the mutations of the all the arguments that are views of that base.

-  for each use of a base in _all_bases or a view of it , that are after the call to foo, replace it with a view of the new output

 for the function above after functionalization we get :
 ```
    def forward(self, arg0_1: "f32[2][1]cpu"):
        auto_functionalized = torch.ops.higher_order.auto_functionalized(torch.ops.mylib.foo.default, _x_base_index = 0, _x_size = (), _x_stride = (), _x_storage_offset = 0, _y_base_index = 0, _y_size = (), _y_stride = (), _y_storage_offset = 1, _all_bases = [arg0_1])
        getitem_1: "f32[2][1]cpu" = auto_functionalized[1];  auto_functionalized = None
        copy_: "f32[2][1]cpu" = torch.ops.aten.copy_.default(arg0_1, getitem_1);  arg0_1 = copy_ = None

        # No stacktrace found for following nodes
        select_2: "f32[][]cpu" = torch.ops.aten.select.int(getitem_1, 0, 0)
        select_3: "f32[][]cpu" = torch.ops.aten.select.int(getitem_1, 0, 1);  getitem_1 = None
        return (select_2, select_3)
```

**B) Semantics of  auto_functionalize**
The new semantics of auto_functionalize is as the following:
1. For each base in all_bases, copy the base and create all_bases copies. (if a base is inplaced we do not need to copy it)
2. For each arg, regenerate the arg from the copy of its base using the view information above.
3. return the original foo output followed by the new bases.

**C) Re-inplace pass**
since auto_functionalize not copy the bases, what we actually inplace is the bases.
 (run just like before but on the beses instead of args).

1. For each base b in _all_bases check if there is any use of base (or its aliases/views) after auto_functionalize (before its overwritten with a copy) if there is not any, then inplace it (avoid copying it in step 1 above).

Pull Request resolved: https://github.com/pytorch/pytorch/pull/134409
Approved by: https://github.com/zou3519
2024-09-04 17:08:58 +00:00

1231 lines
46 KiB
Python

import os # noqa: C101
import sys
from typing import Any, Callable, Dict, List, Optional, TYPE_CHECKING, Union
import torch
def is_fbcode() -> bool:
return not hasattr(torch.version, "git_version")
def fx_graph_remote_cache_default() -> Optional[bool]:
if os.environ.get("TORCHINDUCTOR_FX_GRAPH_REMOTE_CACHE") == "1":
return True
if os.environ.get("TORCHINDUCTOR_FX_GRAPH_REMOTE_CACHE") == "0":
return False
return None
def autotune_remote_cache_default() -> Optional[bool]:
if os.environ.get("TORCHINDUCTOR_AUTOTUNE_REMOTE_CACHE") == "1":
return True
if os.environ.get("TORCHINDUCTOR_AUTOTUNE_REMOTE_CACHE") == "0":
return False
return None
# Enable auto_functionalized_v2 (enabled by default)
enable_auto_functionalized_v2 = (
os.environ.get("TORCHDYNAMO_AUTO_FUNCTIONALIZED_V2", "0") == "1"
)
# add some debug printouts
debug = False
# Whether to disable a progress bar for autotuning
disable_progress = True
# Whether to enable printing the source code for each future
verbose_progress = False
# use fx aot graph codegen cache
fx_graph_cache = (
os.environ.get("TORCHINDUCTOR_FX_GRAPH_CACHE", "0" if is_fbcode() else "1") == "1"
)
# use remote fx aot graph codegen cache
# False: Disables the cache
# True: Enables the cache
# None: Not set -- Off for OSS, JustKnobs based for internal
fx_graph_remote_cache: Optional[bool] = fx_graph_remote_cache_default()
# enable autotune local cache
autotune_local_cache = True
# enable autotune remote cache
# False: Disables the cache
# True: Enables the cache
# None: Not set -- Off for OSS, JustKnobs based for internal
autotune_remote_cache: Optional[bool] = autotune_remote_cache_default()
# Force disabled all inductor level caching -- This will override any other caching flag
force_disable_caches = os.environ.get("TORCHINDUCTOR_FORCE_DISABLE_CACHES") == "1"
# sleep in inductor for testing
sleep_sec_TESTING_ONLY: Optional[int] = None
# use cpp wrapper instead of python wrapper
cpp_wrapper = os.environ.get("TORCHINDUCTOR_CPP_WRAPPER", "0") == "1"
# codegen cpp wrapper code in an ABI compatible mode
abi_compatible = (
os.environ.get("TORCHINDUCTOR_ABI_COMPATIBLE", "1" if is_fbcode() else "0") == "1"
)
c_shim_version = os.environ.get("TORCHINDUCTOR_C_SHIM_VERSION", "2")
# dead code elimination
dce = False
# assume weight tensors are fixed size
static_weight_shapes = True
# put correctness assertions in generated code
size_asserts = os.environ.get("TORCHINDUCTOR_SIZE_ASSERTS", "1") == "1"
nan_asserts = os.environ.get("TORCHINDUCTOR_NAN_ASSERTS") == "1"
# enable loop reordering based on input orders
pick_loop_orders = True
# reuse a kernel input as the output
inplace_buffers = True
# reuse a buffer for an unrelated purpose
allow_buffer_reuse = True
# Enable pooled allocations for non-output tensors
memory_planning = os.environ.get("TORCHINDUCTOR_MEMORY_PLANNING", "0") == "1"
# How to organize memory under memory_planning=True:
# - "none": do not try to pool storage, just reuse
# - "intermediates": all non-outputs share storage, outputs each get unique storage
# - "outputs": two pools, one for intermediates (freed on return) and one for outputs
# - "combined": a single pool for both intermediates and outputs
memory_pool = os.environ.get("TORCHINDUCTOR_MEMORY_POOL", "intermediates")
# codegen benchmark harness
benchmark_harness = True
# fuse pointwise into templates
epilogue_fusion = True
# do epilogue fusions before other fusions
epilogue_fusion_first = False
# enable pattern match+replace optimizations
pattern_matcher = True
# set to True to enable the back-to-back GEMM pass
b2b_gemm_pass = False
# register custom graph optimization pass hook. so far, pre/post passes are
# only applied before/after pattern_matcher in post_grad_passes.
#
# def my_custom_pre_pass(graph: torch.fx.graph.Graph):
# # my custom graph optimization pass
# ...
#
# def my_custom_post_pass(graph: torch.fx.graph.Graph):
# # my custom graph optimization pass
# ...
#
# torch._inductor.config.post_grad_custom_pre_pass = my_custom_pre_pass
# torch._inductor.config.post_grad_custom_post_pass = my_custom_post_pass
post_grad_custom_pre_pass: Optional[Callable[[torch.fx.graph.Graph], None]] = None
post_grad_custom_post_pass: Optional[Callable[[torch.fx.graph.Graph], None]] = None
# Registers a custom joint graph pass.
joint_custom_pre_pass: Optional[Callable[[torch.fx.Graph], None]] = None
joint_custom_post_pass: Optional[Callable[[torch.fx.Graph], None]] = None
# Registers a custom pregrad pass. Note that the pre-grad IR is 1.
# non-functional, 2. non-normalized, and 3. prone to change. Ideally we should
# use post-grad passes.
pre_grad_custom_pass: Optional[Callable[[torch.fx.graph.Graph], None]] = None
# Registers a custom pass to be run right before fusion in Inductor scheduler.
# WARNING: Inductor scheduler IR is at prototype stage and subject to change,
# hence custom IR passes built on top of it might break in the future.
_pre_fusion_custom_pass: Optional[
Callable[
[List["torch._inductor.scheduler.BaseSchedulerNode"]],
List["torch._inductor.scheduler.BaseSchedulerNode"],
]
] = None
# Deprecated
split_cat_fx_passes = True
# Optimize conv-batchnorm if batchnorm is in eval mode. Slightly reduces numerical stability.
efficient_conv_bn_eval_fx_passes = False
# Enable predispatch aten IR for export
is_predispatch = False
# Deprecated
group_fusion = False
# Deprecated
batch_fusion = True
# Pre grad fusion and options in order, set to empty dict to disable fusion.
# Call `torch._inductor.fx_passes.group_batch_fusion.list_group_batch_fusions()` to see available fusions.
# batch fusion options:
# batch_linear
# batch_linear_lhs
# batch_layernorm
# batch_tanh
# batch_relu
# batch_sigmoid
# split cat fusion options:
# normalization_pass
# remove_split_with_size_one_pass
# merge_getitem_cat_pass
# merge_stack_tahn_unbind
# merge_splits_pass
# mutate_cat_pass
# split_cat_pass
pre_grad_fusion_options: Dict[str, Dict[str, Any]] = {
"batch_linear": {},
"batch_linear_lhs": {},
"batch_layernorm": {},
"batch_tanh": {},
"batch_relu": {},
"batch_sigmoid": {},
}
# Post grad fusion and options, set to empty dict to disable fusion.
# Call `torch._inductor.fx_passes.group_batch_fusion.list_group_batch_fusions(False)` to see available fusions.
post_grad_fusion_options: Dict[str, Dict[str, Any]] = {}
# enable reordering pass for improving memory locality
reorder_for_locality = True
# Scale down RBLOCK for better occupancy
dynamic_scale_rblock = os.environ.get("TORCHINDUCTOR_DYNAMIC_SCALE_RBLOCK", "1") == "1"
# this forces fusion for int_mm with mul. Needed when you want to avoid realizing the int32
# but the mul gets fused with other pointwise ops instead.
force_fuse_int_mm_with_mul = False
# for pattern torch.mm(a, b.to(dtype)) with cuda tensors,
# enable torch._inductor.kernel.mm.tuned_mixed_mm fused kernel.
# Autotune will compare perf with normal cast->then->mm option
use_mixed_mm = True
# enable runtime numeric check for pre/post grad fx passes
# floating point provides limited accuracy (about 7 decimal digits for single precision
# floating point numbers,about 16 decimal digits for double precision floating point numbers)
# according to PyTorch documentation.
# https://pytorch.org/docs/stable/notes/numerical_accuracy.html#batched-computations-or-slice-computations
fx_passes_numeric_check: Dict[str, Any] = {
"pre_grad": False,
"precision": 1e-4,
"num_iterations": 1,
"requires_optimizer": True,
}
# mixed_mm_choice can be used to control the behaviour for pattern torch.mm(a, b.to(dtype)) with cuda tensors.
# The fallback aten implementation is normal cast->then->mm option.
# If mixed_mm_choice is "default": this flag will be ignored.
# If mixed_mm_choice is "triton":
# - Always use torch._inductor.kernel.mm.tuned_mixed_mm's fused kernel.
# - Autotune will not compare with fallback.
# If mixed_mm_choice is "aten": always use the fallback aten implementation.
# If mixed_mm_choice is "heuristic":
# - Enables the heuristic.
# - If the heuristic decides to add a config, it will add the config as the first choice.
# - If autotune is disabled, this config will always be chosen.
# - If autotune is enabled, it will also compare with fallback aten implementation and fused kernel.
# The use_mixed_mm flag will be ignored if mixed_mm_choice != "default".
mixed_mm_choice = "heuristic"
# enable reordering pass for increasing overlap between compute and communication
reorder_for_compute_comm_overlap = False
# passes (in execution order) for increasing overlap between compute and communication
# for built-in passes, use string name; for user-defined passes, pass in the function handle
# WARNING: Inductor scheduler IR is at prototype stage and subject to change,
# hence custom IR passes built on top of it might break in the future.
reorder_for_compute_comm_overlap_passes = [
"reorder_compute_for_overlap",
"sink_waits",
"raise_comms",
]
# runtime estimation function for ops
# for built-in estimation function, pass in "default"; for user-defined estimation function, pass in the function handle
estimate_op_runtime = "default"
# unit: GB/s, uni-directional P2P bandwidth per card
# default value is NVLink
intra_node_bw = 300
# unit: GB/s, uni-directional P2P bandwidth per node
# default value is InfiniBand
inter_node_bw = 25
# enable slow autotuning passes to select algorithms
max_autotune = os.environ.get("TORCHINDUCTOR_MAX_AUTOTUNE") == "1"
# enable slow autotuning passes to select pointwise/reductions algorithms
max_autotune_pointwise = os.environ.get("TORCHINDUCTOR_MAX_AUTOTUNE_POINTWISE") == "1"
# enable slow autotuning passes to select gemm algorithms
max_autotune_gemm = os.environ.get("TORCHINDUCTOR_MAX_AUTOTUNE_GEMM") == "1"
# force cublas and triton to use the same precision; cublas supports TF32 for matmul operations
# when m, n, k are multiples of 16, 16, 8, whereas triton supports TF32 for matmul operations
# for any combinations of m, n, k, regardless of their alignment. setting this flag will ensure
# that triton does not use TF32 wherever cublas would not use TF32
force_same_precision = (
True if is_fbcode() else os.environ.get("TORCHINDUCTOR_FORCE_SAME_PRECISION") == "1"
)
# Specify candidate backends for gemm autotune.
# Possible choices are combinations of: ATen, Triton, CUTLASS, CK, CPP.
# ATen: default Pytorch ATen kernels.
# Triton: Triton templates defined in torch inductor (AMD and NVidia GPUs).
# CUTLASS: Cutlass templates and kernels (NVidia GPUs only).
# CK: Composable Kernel templates and kernels (AMD Instinct GPUs only).
# CPP: CPP templates and kernels for CPU.
max_autotune_gemm_backends = os.environ.get(
"TORCHINDUCTOR_MAX_AUTOTUNE_GEMM_BACKENDS", "ATEN,TRITON,CPP"
).upper()
# As above, specify candidate backends for conv autotune.
# NB: in some cases for 1x1 convs we emit as matmul,
# which will use the backends of `max_autotune_gemm_backends`
max_autotune_conv_backends = os.environ.get(
"TORCHINDUCTOR_MAX_AUTOTUNE_CONV_BACKENDS", "ATEN,TRITON"
).upper()
# Specify the size of the search space for GEMM autotuning.
# DEFAULT - balance between compile time overhead and performance
# EXHAUSTIVE - maximize performance
max_autotune_gemm_search_space = os.environ.get(
"TORCHINDUCTOR_MAX_AUTOTUNE_GEMM_SEARCH_SPACE", "DEFAULT"
).upper()
# Whether we fall back to ATen or hard error when no matches are found during autotuning
autotune_fallback_to_aten = (
os.environ.get("TORCHINDUCTOR_AUTOTUNE_FALLBACK_TO_ATEN", "1") == "1"
)
# the value used as a fallback for the unbacked SymInts
# that can appear in the input shapes (e.g., in autotuning)
unbacked_symint_fallback = 8192
# DEPRECATED, DO NOT USE
search_autotune_cache = False
save_args = os.environ.get("TORCHINDUCTOR_SAVE_ARGS") == "1"
# We will disable creating subprocess for autotuning if this is False
autotune_in_subproc = os.environ.get("TORCHINDUCTOR_AUTOTUNE_IN_SUBPROC") == "1"
# The following three timeouts are applicable if autotune_in_subproc is True:
# Max time that a a valid benchmark result may take during autotuning
max_autotune_subproc_result_timeout_seconds = 60.0
# Additional time we allow subprocesses to terminate gracefully after the timeout until we send a SIGTERM
max_autotune_subproc_graceful_timeout_seconds = 1.0
# Additional time that we grant after a SIGTERM until we do a hard SIGKILL of subprocesses
max_autotune_subproc_terminate_timeout_seconds = 2.0
# If autotuning in subprocess, whether to use multiple devices
autotune_multi_device = os.environ.get("TORCHINDUCTOR_AUTOTUNE_MULTI_DEVICE") == "1"
coordinate_descent_tuning = (
os.environ.get("TORCHINDUCTOR_COORDINATE_DESCENT_TUNING") == "1"
)
coordinate_descent_check_all_directions = (
os.environ.get("TORCHINDUCTOR_COORDINATE_DESCENT_CHECK_ALL_DIRECTIONS") == "1"
)
coordinate_descent_search_radius = int(
os.environ.get("TORCHINDUCTOR_COORDINATE_DESCENT_RADIUS", "1")
)
# AutoHeuristic is a framework that allows one to collect data from autotuning, use the data to learn a heuristic, and
# generate the learned heursitic to code which is shipped with the compiler
# Specify a list of comma separated optimizations to collect data for
autoheuristic_collect = os.environ.get("TORCHINDUCTOR_AUTOHEURISTIC_COLLECT", "")
# Specify a list of comma separated optimizations to use learned heuristics for
autoheuristic_use = os.environ.get("TORCHINDUCTOR_AUTOHEURISTIC_USE", "mixed_mm")
def run_autoheuristic(name: str) -> bool:
return collect_autoheuristic(name) or use_autoheuristic(name)
def collect_autoheuristic(name: str) -> bool:
return name in torch._inductor.config.autoheuristic_collect.split(",")
def use_autoheuristic(name: str) -> bool:
return name in torch._inductor.config.autoheuristic_use.split(",")
# If set to "DEFAULT", this will use the default log path specified in autoheuristic.py.
# If set to another path, autoheuristic will instead log results to the given path.
autoheuristic_log_path = os.environ.get(
"TORCHINDUCTOR_AUTOHEURISTIC_LOG_PATH", "DEFAULT"
)
# Disabled by default on ROCm, opt-in if model utilises NHWC convolutions
layout_opt_default = "1" if not torch.version.hip else "0"
layout_optimization = (
os.environ.get("TORCHINDUCTOR_LAYOUT_OPTIMIZATION", layout_opt_default) == "1"
)
force_layout_optimization = os.environ.get("TORCHINDUCTOR_FORCE_LAYOUT_OPT", "0") == "1"
# Whether to keep the output strides the same as eager after layout optimization.
keep_output_stride = os.environ.get("TORCHINDUCTOR_KEEP_OUTPUT_STRIDE", "1") == "1"
# Enabling this will let compiler print warning messages if a generated triton
# kernel has inputs with mixed layouts. This is helpful for perf debugging
# since kernel with mixed layout inputs may run much slower then one whose inputs
# have uniform layouts.
warn_mix_layout = os.environ.get("TORCHINDUCTOR_WARN_MIX_LAYOUT") == "1"
# control store vs recompute heuristic
# For fanouts, rematerialization can lead to exponential blowup. So, have
# smaller threshold
realize_reads_threshold = 4
realize_opcount_threshold = 30
# Threshold to prevent excessive accumulation of ops in one buffer during lowering
realize_acc_reads_threshold = 8
# fallback to eager for random/dropout, this is slow but useful for debugging
fallback_random = False
# automatically create fallbacks when encountering an unhandled op
implicit_fallbacks = True
# fuse even in cases without common reads
aggressive_fusion = False
# For each fused kernel in the wrapper, comment with the nodes that get fused.
# Useful for debugging fusion.
debug_fusion = os.environ.get("TORCHINDUCTOR_DEBUG_FUSION") == "1"
benchmark_fusion = os.environ.get("TORCHINDUCTOR_BENCHMARK_FUSION") == "1"
enabled_metric_tables = os.environ.get("TORCHINDUCTOR_ENABLED_METRIC_TABLES", "")
loop_ordering_after_fusion = (
os.environ.get("TORCHINDUCTOR_LOOP_ORDERING_AFTER_FUSION", "0") == "1"
)
# For Triton Templates, select fastest of best template + epilogue vs best template + separate epilogue kernel
benchmark_epilogue_fusion = (
os.environ.get("TORCHINDUCTOR_BENCHMARK_EPILOGUE_FUSION", "1") == "1"
)
# Take how many of the top triton kernels to benchmark epilogue
max_epilogue_benchmarked_choices = 1
# how many nodes to allow into a single fusion
max_fusion_size = 64
# max number of inputs to generate cat as a pointwise op with masked laods
max_pointwise_cat_inputs = 8
# replace small reductions with pointwise, disable with `= 1`
unroll_reductions_threshold = 8
# Add extra comments to output code (causes compile cache misses)
comment_origin = False
# Convert 1x1 convs into matmuls
conv_1x1_as_mm = False
# Enable split reductions for better utilization when the dimension
# being reduced over is large (by splitting it)
split_reductions = True
benchmark_kernel = os.environ.get("TORCHINDUCTOR_BENCHMARK_KERNEL", "0") == "1"
# Enable constant and index_expr folding
constant_and_index_propagation = True
# we always add constants into graph.constants without
# performing any constant-inlining optimization
always_keep_tensor_constants = False
# assert that indirect indexing does not read / write out of bounds
assert_indirect_indexing = True
# compute CSE bounds on variables that do not appear in the FX graph
compute_all_bounds = False
# enable the combo kernel that combines data-independent kernels (additional
# to foreach kernels) into a single one (Experimental)
combo_kernels = False
# benchmark combo kernels and only allow ones with perf gains
benchmark_combo_kernel = False
# combo_kernel autotuning options: 0 - disable, 1 - enable except for foreach,
# 2 - enable for all
combo_kernels_autotune = 1
# Enable masking for combining kernels of mixed sizes: 0 - disable, 1 - enable
# for all except for foreach, 2 - enable for all
combo_kernel_allow_mixed_sizes = 1
# Enable dynamic shapes for foreach kernels
combo_kernel_foreach_dynamic_shapes = False
# constant folding on the joint graph
joint_graph_constant_folding = True
# Enable indirect_indexing asserts for decompositions and lowerings
debug_index_asserts = False
# Mode to emulate pytorch eager numerics for lower precision (fp16, bf16)
# Pytorch eager computes bf16/fp16 by upcasting inputs to fp32 and downcasting after
# For multiple, fused pointwise nodes, inductor will elide the intermediary upcasts and downcasts
# Typically this should be closer to fp64 ref numerics. However, it can be useful for debugging
# to emulate the eager numerics.
emulate_precision_casts = False
# warnings intended for PyTorch developers, disable for point releases
is_nightly_or_source = "dev" in torch.__version__ or "git" in torch.__version__
developer_warnings = is_fbcode() or is_nightly_or_source
# This pattern matches a special usage of scatter
# 1. It's applied to a constant tensor
# 2. The index tensor has size 1 in the scatter dimension
# Such pattern generates a sparse matrix when the const tensor is all-zero.
# We can lower this pattern to a pointwise kernel for more fusion opportunities
# and saving memory footprint.
optimize_scatter_upon_const_tensor = (
os.environ.get("TORCHINDUCTOR_OPTIMIZE_SCATTER_UPON_CONST_TENSOR", "1") == "1"
)
# The multiprocessing start method to use for inductor workers in the codecache.
# Can be "subprocess" or "fork".
def decide_worker_start_method() -> str:
start_method = os.environ.get(
"TORCHINDUCTOR_WORKER_START", "fork" if is_fbcode() else "subprocess"
)
assert start_method in (
"subprocess",
"fork",
), f"Invalid start method: {start_method}"
return start_method
worker_start_method = decide_worker_start_method()
# Flags to turn on all_reduce fusion. These 2 flags should be automaticaly turned
# on by DDP and should not be set by the users.
_fuse_ddp_communication = False
_fuse_ddp_bucket_size = 25
# Flag to control which fusion passes to apply. Functions in the list will
# be applied in order. There are two different different fusion passes
# --"fuse_ddp_with_concat_op" and "fuse_ddp_with_coalesced_op". The default
# one is "fuse_ddp_with_concat_op". Users can also change this to a customized
# fusion function.
#
# The fusion currently does not support multiple DDP with different PG or
# data type. This feature will be added in the future PRs.
#
# "schedule_comm_wait" is used to delay the wait ops to maximize comm/comp
# overlapping. At this moment, this pass performs better than
# reorder_for_compute_comm_overlap_passes but we will add the logic of
# "schedule_comm_wait" in the future and remove the one here.
_fuse_ddp_communication_passes: List[Union[Callable[..., None], str]] = [
"fuse_ddp_with_concat_op",
"schedule_comm_wait",
]
_micro_pipeline_tp: bool = False
def decide_compile_threads() -> int:
"""
Here are the precedence to decide compile_threads
1. User can override it by TORCHINDUCTOR_COMPILE_THREADS. One may want to disable async compiling by
setting this to 1 to make pdb happy.
2. Set to 1 if it's win32 platform
3. decide by the number of CPU cores
"""
if "TORCHINDUCTOR_COMPILE_THREADS" in os.environ:
return int(os.environ["TORCHINDUCTOR_COMPILE_THREADS"])
elif sys.platform == "win32":
return 1
elif is_fbcode():
return 1
else:
cpu_count = (
len(os.sched_getaffinity(0))
if hasattr(os, "sched_getaffinity")
else os.cpu_count()
)
assert cpu_count
return min(32, cpu_count)
compile_threads = decide_compile_threads()
# gemm autotuning global cache dir
if is_fbcode():
from libfb.py import parutil
try:
if __package__:
global_cache_dir = parutil.get_dir_path(
os.path.join(__package__.replace(".", os.sep), "fb/cache")
)
else:
global_cache_dir = parutil.get_dir_path("fb/cache")
except ValueError:
global_cache_dir = None
else:
global_cache_dir = None
# If kernel is fused, the name is generated from the origin node op names
# for larger kernels limit this
kernel_name_max_ops = 10
# Pad input tensors of matmul/bmm/addmm to leverage Tensor Cores in NVIDIA GPUs
shape_padding = os.environ.get("TORCHINDUCTOR_SHAPE_PADDING", "1") == "1"
# Control if we will do padding for pointwise/reductions
comprehensive_padding = (
os.environ.get("TORCHINDUCTOR_COMPREHENSIVE_PADDING", "1") == "1"
)
pad_channels_last = False
# The width of comprehensive padding, in bytes.
# CUDA max memory transaction size is 128 bytes for a warp.
padding_alignment_bytes = 128
# Threshold on the minimum stride that will be padded.
#
# Don't align a too small stride since that causes too much memory increase.
# Pad too small stride may also cause perf loss. We may result in many tiny data blocks
# with gaps in between. That causes less coalesced GPU memory access!
#
# Initially we pick 320 as the threshold since for alignement=16,
# that results in at most 5% memory cost.
#
# But later on we raise the threshold to 1024 to avoid interfere with persistent reduction.
# Let's say an inner reduction has a row size 513. Inductor will generate
# persistent reduction code.
# If we do padding, the strides are not contiguous any more. Inductor
# uses a much smaller threshold for persistent reduction in this case and
# generates potentially worse non-persistent reduction code.
#
# This change turns HF AllenaiLongformerBase amp training from a loss of 1.09x to a win of 1.05x.
# (baseline: 71.09ms, padding w/o this change: 77.38ms, padding with this change: 67.77ms)
padding_stride_threshold = 1024
# Enable padding outputs, even if they would not be padded in eager mode.
# By default, we use the same strides as eager mode.
pad_outputs = False
# Whether to treat output of the backward graph as user visible.
# For user visible outputs, inductor will make sure the stride matches with eager.
bw_outputs_user_visible = True
# Whether to always use shape padding if it is enabled and possible
force_shape_pad: bool = False
# Fx-based linear/matmul/bmm + permute/transpose vertical fusion
permute_fusion = os.environ.get("TORCHINDUCTOR_PERMUTE_FUSION", "0") == "1"
# Mark the wrapper call in PyTorch profiler
profiler_mark_wrapper_call = False
# Generate hook calls to torch._inductor.hooks.run_intermediate_hooks for
# every intermediate for which we can correlate it with an intermediate
# from the original FX graph
generate_intermediate_hooks = False
# Populate traceback field on IRNode; good for debugging why origin_node is
# not populated, or finding out where an IRNode was constructed
debug_ir_traceback = False
# used for debugging to make sure config is properly set
_raise_error_for_testing = False
_profile_var = os.environ.get("TORCHINDUCTOR_PROFILE", "")
profile_bandwidth = _profile_var != ""
profile_bandwidth_regex = "" if _profile_var == "1" else _profile_var
# Specify a file where we print out the profiling results.
# None means we do not dump results to a file.
profile_bandwidth_output = os.environ.get("TORCHINDUCTOR_PROFILE_OUTPUT", None)
# Switch to do_bench_using_profiling to exclude the CPU overheads
profile_bandwidth_with_do_bench_using_profiling = (
os.environ.get("TORCHINDUCTOR_PROFILE_WITH_DO_BENCH_USING_PROFILING") == "1"
)
# TODO: remove later
disable_cpp_codegen = False
# Freezing will attempt to inline weights as constants in optimization
# and run constant folding and other optimizations on them. After freezing, weights
# can no longer be updated.
freezing: bool = os.environ.get("TORCHINDUCTOR_FREEZING", "0") == "1"
# Make freezing invalidate the eager Parameters of nn modules, to avoid memory overhead
# of potentially keeping multiple copies of weights.
freezing_discard_parameters: bool = False
# Kill switch for allowing temporary tensors to be allocated as stack arrays. Tests
# should be run with this flag both on and off to make sure we have coverage.
allow_stack_allocation: bool = (
os.environ.get("TORCHINDUCTOR_STACK_ALLOCATION", "1" if is_fbcode() else "0") == "1"
)
# Enables an alternate DSO interface (the "minimal ArrayRef interface") intended
# to maximize performance for use cases that it can accommodate at the expense of
# generality. In brief:
# - inputs and outputs are ArrayRefTensor<T> (note that strides are required, but the
# tensor must be contiguous)
# - constant handling is unchanged because it is not a per-inference-iteration bottleneck
#
# When the DSO is generated in this mode, the usual interface will also be supported,
# but performance for that interface may be degraded.
use_minimal_arrayref_interface: bool = False
# decompose some memory bound matmul/bmm to mul
decompose_mem_bound_mm: bool = False
# assume_aligned_inputs means that we assume that inputs will be aligned; we generate
# code using this assumption, and clone tensors before use if they aren't aligned.
# In the common case, most inputs will be aligned.
assume_aligned_inputs: bool = False
# For the user-written Triton kernels compiled with the model, ignore the unsupported
# arguments passed to the @triton.autotune in the user's code; this is unsafe, as
# ignoring the unsupported args may lead to unexpected autotuning behavior: don't
# set unless you know what you're doing.
unsafe_ignore_unsupported_triton_autotune_args: bool = False
# When True, we will check in scheduler.py _codegen that there are no "loops"
# in the call stack; that is to say, the same frame multiple times. This
# ensures that a cProfile trace to this frame will be a straight line without
# any cycles.
check_stack_no_cycles_TESTING_ONLY: bool = False
# config specific to codegen/cpp.py
class cpp:
# set to torch.get_num_threads()
threads = -1
# Do not generate loops when the condition doesn't hold, like:
# for(long i0=4096; i0<4096; i0+=1)
no_redundant_loops = (
os.environ.get("TORCHINDUCTOR_CPP_NO_REDUNDANT_LOOPS", "1") == "1"
)
# Assume number of threads is dynamic, don't specialize thread number.
# Kernels don't recompile on thread number changes with this flag on.
# For single-threaded workload, turning it on would incur a slight
# performance degradation.
dynamic_threads = os.environ.get("TORCHINDUCTOR_CPP_DYNAMIC_THREADS", "0") == "1"
simdlen: Optional[int] = None
min_chunk_size = int(os.environ.get("TORCHINDUCTOR_CPP_MIN_CHUNK_SIZE", "4096"))
cxx = (
None, # download gcc12 from conda-forge if conda is installed
# "g++-12",
# "g++-11",
# "g++-10",
# "clang++",
os.environ.get("CXX", "clang++" if sys.platform == "darwin" else "g++"),
# "g++.par",
)
# Allow kernel performance profiling via PyTorch profiler
enable_kernel_profile = (
os.environ.get("TORCHINDUCTOR_CPP_ENABLE_KERNEL_PROFILE", "0") == "1"
)
# enable weight prepacking to get a better performance; may lead to large memory footprint
weight_prepack = os.environ.get("TORCHINDUCTOR_CPP_WEIGHT_PREPACK", "1") == "1"
# Inject a bug into our relu implementation; useful for testing our repro
# extraction and minification functionality.
# Valid values: "compile_error", "runtime_error", "accuracy"
inject_relu_bug_TESTING_ONLY: Optional[str] = None
inject_log1p_bug_TESTING_ONLY: Optional[str] = None
# If None, autodetect whether or not AVX512/AVX2 can be used. Otherwise,
# force usage as specified, without testing.
vec_isa_ok: Optional[bool] = None
# similar to config.triton.descriptive_names
descriptive_names = "original_aten"
# how many nodes to allow into a single horizontal fusion
max_horizontal_fusion_size = int(
os.environ.get("TORCHINDUCTOR_CPP_MAX_HORIZONTAL_FUSION_SIZE", "16")
)
# Make scatter_reduce fallback when reduce is sum to avoid performance regression
# using atomic_add.
fallback_scatter_reduce_sum = (
os.environ.get("TORCHINDUCTOR_CPP_FALLBACK_SCATTER_REDUCE_SUM", "1") == "1"
)
# Use funsafe-math-optimizations when compiling
enable_unsafe_math_opt_flag = (
os.environ.get("TORCHINDUCTOR_CPP_ENABLE_UNSAFE_MATH_OPT_FLAG", "0") == "1"
)
# Use ffp-contract when compiling
enable_floating_point_contract_flag = (
os.environ.get("TORCHINDUCTOR_CPP_ENABLE_FLOATING_POINT_CONTRACT_FLAG", "0")
== "1"
)
# Disable the tiling select heuristic
enable_tiling_heuristics = (
os.environ.get("TORCHINDUCTOR_CPP_ENABLE_TILING_HEURISTIC", "1") == "1"
)
# Maximal allowed number of slices on K-dim for a GEMM kernel. This controls
# the maximal parallelism of K-slicing. Since K-slicing requires extra thread
# synchronization and buffers, the maximal number of slices is limited to
# mitigate the sync overhead and memory usage.
# When set to 0, the number of slices is unlimited.
gemm_max_k_slices = int(os.environ.get("TORCHINDUCTOR_CPP_GEMM_MAX_K_SLICES", "1"))
# For perf tuning and debugging purpose, configure the pre-defined cache blocking for
# MxNxK dims respectively. The blockings are separated by comma and the unit is
# the number of register blocks.
# For example, "4,1,10" means 4 register blocks on M, 1 on N and 10 on K respectively.
gemm_cache_blocking = os.environ.get("TORCHINDUCTOR_CPP_GEMM_CACHE_BLOCKING", None)
# For perf tuning and debugging purpose, configure the pre-defined thread blocking factors for
# MxNxK dims respectively. The factors are separated by comma and their product
# should be the same as the total number of threads.
# For example, if the total number of threads is 56, "7,4,2" means the work is
# decomposed into 7x4x2 thread blocks along MxNxK of a GEMM.
gemm_thread_factors = os.environ.get("TORCHINDUCTOR_CPP_GEMM_THREAD_FACTORS", None)
# Whether to enable masked vectorization for the tail_loop.
enable_loop_tail_vec = True
# config specific to codegen/triton.py
class triton:
# Use cudagraphs on output code
cudagraphs = os.environ.get("TORCHINDUCTOR_CUDAGRAPHS") == "1"
# Use cudagraph trees for memory pooling if `cudagraphs` is True
cudagraph_trees = True
# Should we skip cudagraphing graphs with dynamic shape inputs
# If False, we will re-record a graph for each unique set of shape inputs
cudagraph_skip_dynamic_graphs = False
# assertions not on the fast path, steady state
slow_path_cudagraph_asserts = True
# TODO - need to debug why this prevents cleanup
cudagraph_trees_history_recording = False
# Enable cudagraph support for mutated inputs from prior cudagraph pool
cudagraph_support_input_mutation = False if is_fbcode() else True
# Maximal number of allowed cudagraph re-record for a function and
# a cudagraph node due to static input tensor address changes or
# cudagraph managed tensor data pointer changed.
# i.e., allow num_recording <= cudagraph_unexpected_rerecord_limit
# note: we are conservative here and choose a large limit.
cudagraph_unexpected_rerecord_limit = 128
# Warn loudly when the number of cudagraphs due to dynamic shape
# exceeds this limit
cudagraph_dynamic_shape_warn_limit: Optional[int] = 50
# synchronize after cudagraph invocation
force_cudagraph_sync = False
# always run cudagraphs in the eager warmup stage
# instead of recording and executing cudagraphs
force_cudagraphs_warmup = False
# assertions on the fast path
fast_path_cudagraph_asserts = False
# skip warmup for cudagraph trees
skip_cudagraph_warmup = False
# Synchronize before and after every compiled graph.
debug_sync_graph = False
# Synchronize after every kernel launch, to help pinpoint bugs
debug_sync_kernel = False
# Always load full blocks (rather than broadcasting inside the block)
dense_indexing = False
# limit tiling dimensions
max_tiles = 2
# Prefer higher dimensional tilings. This simplifies indexing expressions, making
# it easier to identify block pointers.
prefer_nd_tiling: bool = False
# use triton.autotune for pointwise ops with complex layouts
# this should only be disabled for debugging/testing
autotune_pointwise = True
# max autotune gemm with cublasLt
autotune_cublasLt = True
# Tune the generated Triton kernels at compile time instead of first time they run
autotune_at_compile_time = False
# should we stop a fusion to allow better tiling?
tiling_prevents_pointwise_fusion = True
tiling_prevents_reduction_fusion = True
# should we give different names to kernels
# Note: This is orthogonal to descriptive_names - this is deciding whether
# our triton kernel names should all be `triton_` (to maximize caching) or
# whether they should be unique.
unique_kernel_names = os.environ.get("TORCHINDUCTOR_UNIQUE_KERNEL_NAMES") == "1"
# should we put op names in kernel names
# False: No special names (just triton__1, triton__2, etc.)
# "torch": Maps to the fx op in the Dynamo graph (module name, method name, etc.)
# "original_aten": Maps to the highest-level aten op (i.e. pre-decompositions)
# "inductor_node": Maps to the node name in the FX graph passed to Inductor
descriptive_names = "original_aten"
# use alternate codegen for smaller reductions
persistent_reductions = (
os.environ.get("TORCHINDUCTOR_PERSISTENT_REDUCTIONS", "1") == "1"
)
# 0/False: disable
# 1/True: enable, use tuning to pick between different subkernels
# 2: enable, force using persistent reduction (for debugging)
# 3: enable, force using non-persistent reduction (for debugging)
multi_kernel = int(os.environ.get("TORCHINDUCTOR_MULTI_KERNEL", "0"))
# hint to Triton when arguments are divisible by 16
divisible_by_16 = True
# Minimum RBLOCK to be used for a TritonSplitScanKernel
# NOTE: This also indirectly controls the size of workspace buffer required
min_split_scan_rblock = 256
# Store the generated cubin files for cpp wrapper code to load
store_cubin = False
# the max number of spills we allow for the configs we benchmark.
# Setting this to 0 means we skip a config if it spills even a single
# register.
# Setting it to a larger value allows a config spilling a small amount
# of registers being benchmarked.
#
# NOTE: triton will always report >0 register spills for kernels using sin/cos.
# (check this issue https://github.com/openai/triton/issues/1756 )
# So far we see a fixed 8 spilled registers for kernels using sin/cos.
# Raise the threshold to 16 to be safe.
# We should revisit this once we understand more of the source of register spills.
spill_threshold: int = 16
# Generate code containing the newer tl.make_block_ptr() API for loads/store
use_block_ptr = False
# Inject a bug into our relu implementation; useful for testing our repro
# extraction and minification functionality.
# Valid values: "compile_error", "runtime_error", "accuracy"
inject_relu_bug_TESTING_ONLY: Optional[str] = None
# Whether to upcast float16 / bfloat16 to float32 in triton codegen (Experimental)
codegen_upcast_to_fp32 = True
class aot_inductor:
# AOTInductor output path
# If an absolute path is specified, the generated lib files will be stored under the directory;
# If a relative path is specified, it will be used as a subdirectory under the default caching path;
# If not specified, a temp directory will be created under the default caching path.
# If the specified path contains something like "model.so", the sub-string will be used
# to name the generated library.
output_path = ""
debug_compile = os.environ.get("AOT_INDUCTOR_DEBUG_COMPILE", "0") == "1"
debug_dump_consts_bin: bool = (
os.environ.get("AOT_INDUCTOR_DEBUG_DUMP_CONSTS_BIN", "0") == "1"
)
# option for debug printing/saving for intermediate tensor values for aot inductor
# 0: disable debug dumping
# 1: enable saving intermediate tensor values
# 2: enable printing intermediate tensor values
debug_intermediate_value_printer = os.environ.get(
"AOT_INDUCTOR_DEBUG_INTERMEDIATE_VALUE_PRINTER", "0"
)
# filtered nodes to be printed for debug values. Specify this option when debug_intermediate_value_printer is set to 2
filtered_kernel_names = os.environ.get(
"AOT_INDUCTOR_FILTERED_KERNELS_TO_PRINT", None
)
# Serialized tree spec for flattening inputs
serialized_in_spec = ""
# Serialized tree spec for flattening outputs
serialized_out_spec = ""
# flag to decide whether to create a submodule for constant graph.
use_runtime_constant_folding: bool = False
# flag to force weight to be appened to the shared library and mmaped by the runtime
# rather than embedded into the data section. Needed to support 1B+ parameter models
force_mmap_weights: bool = False
package: bool = False
class cuda:
# CUDA arch to use for CUDA template kernel compilation.
# e.g. "70", "75", "80", "90", etc.
# When arch is None, Inductor uses torch.cuda.get_device_capability(0).
arch: Optional[str] = None
# CUDA version to use for CUDA template kernel compilation.
# e.g. "11.4", "12.1", etc.
# When version is None, Inductor uses torch.version.cuda.
version: Optional[str] = None
# Optimization level for the host compiler.
compile_opt_level = "-O1"
# Whether to enable device LTO (link-time-optimization).
enable_cuda_lto = False
# Whether to keep intermediate files dring compilation.
enable_ptxas_info = False
# Whether to enable debug info, e.g. line number, cutlass debug info.
enable_debug_info = False
# Whether to use fast math.
use_fast_math = False
# Path to the CUTLASS repo root directory.
# The default path only works under PyTorch local development environment.
cutlass_dir = os.environ.get(
"TORCHINDUCTOR_CUTLASS_DIR",
os.path.abspath(
os.path.join(os.path.dirname(torch.__file__), "../third_party/cutlass/")
),
)
# Configures the maximum number of CUTLASS configs to profile in max_autotune.
# By default it's None, so that all CUTLASS configs are tuned.
# This is mainly used to reduce test time in CI.
cutlass_max_profiling_configs: Optional[int] = None
# Path to CUDA NVCC.
# NVCC search order:
# 1) cuda_cxx set in this config
# 2) CUDACXX environment variable
# 3) CUDA_HOME environment variable
# 4) default system search PATH.
cuda_cxx: Optional[str] = None
# Minimum value of M*N*K to consider the CUTLASS backend for GEMM ops.
cutlass_backend_min_gemm_size: int = 1
# enable generation of inline standalone runner in CUDA CPP generated code
# which allows to compile the generated code into a standalone executable.
generate_test_runner: bool = (
os.environ.get("INDUCTOR_CUDA_BACKEND_GENERATE_TEST_RUNNER_CODE", "1") == "1"
)
# Keep only Cutlass op configs which contain this regular expression pattern
# Set this to "warpspecialized_cooperative_epi_tma" to enable only SM90 TMA Cutlass Kernels for large GEMMs
cutlass_op_allowlist_regex: Optional[str] = None
# Note: Names of Cutlass ops names can be obtained by calling
# op.configuration_name() on a Cutlass op instance, for example those
# returned from cutlass_utils.gen_ops() or the op argument passed to
# CUTLASSGemmTemplate.render(...)
# Filter Cutlass configs which contain this regular expression pattern
# Set this to "pingpong" to avoid numerical issues
# caused by the op ordering of the "pingpong" memory access
# pattern used by some Cutlass Kernels.
cutlass_op_denylist_regex: Optional[str] = "pingpong"
class rocm:
# Offload arch list for device code compilation, e.g. ["gfx941", "gfx942"].
# If empty, the `native` arch is used
arch: List[str] = []
# Enable the CK backend for CDNA2 and CDNA3 only (for now)
# Processor name reference: https://llvm.org/docs/AMDGPUUsage.html#processors
ck_supported_arch: List[str] = ["gfx90a", "gfx940", "gfx941", "gfx942"]
# Optimization level, use to balance compilation speed and runtime performance
compile_opt_level = "-O2"
# Flag to keep debug information in compiled objects
is_debug = False
# Flag to keep intermediate files (assembly listings, preprocessed sources, etc.)
save_temps = False
# Flag to add `-ffast-math`` to compile flags
use_fast_math = True
# Flag to add `-fgpu-flush-denormals-to-zero` to compile flags
flush_denormals = True
# Flag to print register and LDS usage during compilation
print_kernel_resource_usage = False
# Path to ROCm installation, if None, use env variable ROCM_HOME
rocm_home: Optional[str] = None
# Path to Composable Kernel library.
# Install with `pip install git+https://github.com/rocm/composable_kernel@develop`.
ck_dir = os.environ.get("TORCHINDUCTOR_CK_DIR")
# Number of op instance choices to trade off between runtime perf and compilation time
n_max_profiling_configs: Optional[int] = None
# Flag to use a short list of CK instances which perform well across a variety of shapes.
# Currently RCR and F16 only
use_preselected_instances: bool = False
# Backend to use for CPU codegen either "cpp" or "halide" (experimental)
cpu_backend = "cpp"
# Backend to use for CUDA codegen either "triton" or "halide" (experimental)
cuda_backend = "triton"
class halide:
# Base halide target to use for CPU devices
cpu_target = "host"
# Base halide target to use for CUDA devices
gpu_target = "host-cuda"
# Halide autoscheduler to use, choices are:
# "Anderson2021" (gpu-only), "Li2018", "Adams2019" (cpu-only), or "Mullapudi2016" (cpu-only)
scheduler_cuda = "Anderson2021"
scheduler_cpu = "Adams2019"
# Controls `no_asserts` flag passed to Halide target (warning: can false positive)
asserts = False
# Controls `debug` flag passed to Halide target
debug = False
# Enable (or fallback on) scan kernels such as cumsum
# Halide autoschedulers struggle with these kernels
scan_kernels = False
# create a directory containing lots of debug information
class trace:
# master switch for all debugging flags below
enabled = os.environ.get("TORCH_COMPILE_DEBUG", "0") == "1"
# Save debug information to a temporary directory
# If not specified, a temp directory will be created by system
debug_dir: Optional[str] = None
# Save python logger call >=logging.DEBUG
debug_log = False
# Save python logger call >=logging.INFO
info_log = False
# Save input FX graph (post decomps, pre optimization)
fx_graph = True
# Save FX graph after transformations
fx_graph_transformed = True
# Save TorchInductor IR before fusion pass
ir_pre_fusion = True
# Save TorchInductor IR after fusion pass
ir_post_fusion = True
# Copy generated code to trace dir
output_code = True
# SVG figure showing post-fusion graph
graph_diagram = os.environ.get("INDUCTOR_POST_FUSION_SVG", "0") == "1"
# SVG figure showing fx with fusion
draw_orig_fx_graph = os.environ.get("INDUCTOR_ORIG_FX_SVG", "0") == "1"
# We draw our fx graphs with the "record" shape attribute by default.
# Sometimes, when the graph is very complex, we may hit dot errors like below:
# "flat edge between adjacent nodes one of which has a record shape -
# replace records with HTML-like labels"
# and thus fail to generate a graph. So, let's give the user an option
# to specify the shape attribute for the dot graph. For example, passing
# INDUCTOR_DOT_GRAPH_SHAPE_SVG = "none" would let us generate HTML-like lables
# to workaround the above failure.
dot_graph_shape = os.environ.get("INDUCTOR_DOT_GRAPH_SHAPE_SVG", None)
# If not None, this is the URL that saves the SVG files of the input/output
# graph of each pass that changed the graph
# The nodes that are being transformed in each pass will be colored in yellow
# URL only supports local directory for now
log_url_for_graph_xform = os.environ.get("INDUCTOR_LOG_URL_FOR_GRAPH_XFORM", None)
# Store cProfile (see snakeviz to view)
compile_profile = False
# Upload the .tar.gz file
# Needs to be overriden based on specific environment needs
upload_tar: Optional[Callable[[str], None]] = None
log_autotuning_results: bool = False
_save_config_ignore = [
# workaround: "Can't pickle <function ...>"
"trace.upload_tar",
"post_grad_custom_post_pass",
"post_grad_custom_pre_pass",
"joint_custom_pre_pass",
"joint_custom_post_pass",
"pre_grad_custom_pass",
]
_cache_config_ignore_prefix = [
# trace functions are not relevant to config caching
"trace",
# uses absolute path
"cuda.cutlass_dir",
# not relevant
"compile_threads",
]
if TYPE_CHECKING:
from torch.utils._config_typing import * # noqa: F401, F403
from torch.utils._config_module import install_config_module
# adds patch, save_config, etc
install_config_module(sys.modules[__name__])