Files
pytorch/torch/_dynamo/side_effects.py
Maggie Moss c855f8632e Pyrefly suppressions 7/n (#164913)
Adds suppressions to pyrefly will typecheck clean: https://github.com/pytorch/pytorch/issues/163283

Almost there!

Test plan:
dmypy restart && python3 scripts/lintrunner.py -a
pyrefly check

step 1: delete lines in the pyrefly.toml file from the project-excludes field
step 2: run pyrefly check
step 3: add suppressions, clean up unused suppressions
before: https://gist.github.com/maggiemoss/4b3bf2037014e116bc00706a16aef199

after:
 INFO 0 errors (6,884 ignored)

Pull Request resolved: https://github.com/pytorch/pytorch/pull/164913
Approved by: https://github.com/oulgen
2025-10-08 07:27:17 +00:00

1227 lines
52 KiB
Python

"""
Side effect tracking and management for TorchDynamo's compilation system.
This module provides infrastructure for tracking and managing side effects that occur
during symbolic execution, including:
- Tracking mutations to objects, attributes, and variables
- Managing context changes (cell variables, global namespace modifications)
- Handling aliasing and object identity preservation
- Managing stack frame state and local variable changes
- Tracking function calls with side effects
Key classes:
- SideEffects: Main container for tracking all side effects during execution
- MutableSideEffects: Specialization for mutable object tracking
- AttributeMutation/ValueMutation: Track specific types of mutations
- Various specialized side effect classes for different scenarios
The side effect system ensures that mutations performed during symbolic execution
are properly replayed during runtime, maintaining the correctness of compiled code
while enabling optimizations where safe.
"""
import collections
import contextlib
import inspect
import warnings
import weakref
from collections.abc import Generator, MutableMapping
from types import CellType
from typing import Any, Optional, TYPE_CHECKING
import torch.nn
from torch._dynamo.variables.misc import AutogradFunctionContextVariable
from . import graph_break_hints, utils, variables
from .bytecode_transformation import (
bytecode_from_template,
create_call_function,
create_call_method,
create_instruction,
)
from .codegen import PyCodegen
from .exc import SideEffectsError, unimplemented_v2
from .source import GlobalSource, LocalCellSource, LocalSource, Source
from .utils import is_frozen_dataclass, nn_module_new, object_new
from .variables.base import (
AttributeMutation,
AttributeMutationExisting,
AttributeMutationNew,
is_side_effect_safe,
ValueMutationExisting,
ValueMutationNew,
VariableTracker,
)
from .variables.user_defined import FrozenDataClassVariable
if TYPE_CHECKING:
from torch._dynamo.output_graph import OutputGraph
from torch._dynamo.symbolic_convert import InstructionTranslatorBase
from torch._dynamo.variables.lists import ListVariable
def _manual_dict_setitem(
dict_from: dict[Any, Any], dict_to: dict[Any, Any], mro_index: int
) -> None:
# Carefully calls the dict or OrderedDict `clear` or `__setitem__`. We have
# to be careful because we don't want to trigger the user defined object
# setitem or clear. The mro_index is used to find the dict/OrderedDict from
# the class mro.
dict_class = type(dict_to).__mro__[mro_index]
dict_class.clear(dict_to) # type: ignore[attr-defined]
for k, v in dict_from.items():
dict_class.__setitem__(dict_to, k, v) # type: ignore[index]
def _manual_list_update(list_from: list[Any], list_to: list[Any]) -> None:
list.clear(list_to)
list.extend(list_to, list_from)
class SideEffects:
"""
Maintain records of mutations and provide methods to apply them during code generation.
Handles tracking and applying side effects during PyTorch Dynamo compilation,
maintaining Python semantics by managing mutations, attribute modifications,
and other side effects that occur during program execution.
Key responsibilities:
- Tracks mutations to Python objects, lists, and dictionaries that need to be
applied after an FX graph is run.
- Manages attribute modifications and deletions
- Handles tensor hooks and backward pass state
- Tracks cell variable mutations and global variable changes
- Ensures correct ordering and application of side effects after graph execution
This ensures that optimized code behaves identically to the original Python code with
respect to object mutations and other side effects.
"""
id_to_variable: dict[int, VariableTracker]
store_attr_mutations: dict[VariableTracker, dict[str, VariableTracker]]
keepalive: list[Any]
def __init__(
self,
output_graph: "OutputGraph",
id_to_variable: Optional[dict[int, VariableTracker]] = None,
store_attr_mutations: Optional[
dict[VariableTracker, dict[str, VariableTracker]]
] = None,
keepalive: Optional[list[Any]] = None,
save_for_backward: Optional[
list[tuple[AutogradFunctionContextVariable, list[VariableTracker]]]
] = None,
tensor_hooks: Optional[
dict[
int,
tuple[
"variables.TensorVariable",
VariableTracker,
"variables.RemovableHandleVariable",
str,
],
]
] = None,
) -> None:
super().__init__()
self.output_graph_weakref = weakref.ref(output_graph)
self.id_to_variable = id_to_variable or {}
self.store_attr_mutations = store_attr_mutations or {}
self.keepalive = keepalive or []
self.save_for_backward = save_for_backward or []
self.tensor_hooks = tensor_hooks or {}
# Used by MappingProxyVariable to graph break in case of any mutated
# dict
self._has_existing_dict_mutation = False
# Track Compiled Autograd final callbacks that must be called at the end of Compiled Autograd backward graph.
# Only applicable if this graph is created from Dynamo tracing in Compiled Autograd.
self.ca_final_callbacks_var: Optional[ListVariable] = None
# Tracks VariableTracker objects whose mutations can be skipped.
# For normal mutated variables, Dynamo generates code to replay/reconstruct
# the mutations after graph execution. However, variables in this set have
# their mutations ignored - the mutations happen during
# execution but don't need to be replayed in the generated code.
# Used for temporary mutations in contexts like torch.func.functional_call,
# where module parameters/buffers are modified but later restored.
self.ignore_mutation_on_these_variables: set[VariableTracker] = set()
def ignore_mutations_on(self, var: VariableTracker) -> None:
"""Mutations to this variable will be executed but not not tracked,
typically used for temporary mutations that are later restored."""
self.ignore_mutation_on_these_variables.add(var)
def stop_ignoring_mutations_on(self, var: VariableTracker) -> None:
"""Remove a variable from the skip mutation set, restoring normal mutation tracking."""
if var in self.ignore_mutation_on_these_variables:
self.ignore_mutation_on_these_variables.remove(var)
def __eq__(self, other: object) -> bool:
assert isinstance(other, SideEffects)
# NB: do NOT test keepalive
return (
self.id_to_variable == other.id_to_variable
and self.store_attr_mutations == other.store_attr_mutations
and self.save_for_backward == other.save_for_backward
and self.tensor_hooks == other.tensor_hooks
)
def diff(self, other: "SideEffects") -> Optional[str]:
if self.id_to_variable != other.id_to_variable:
sk_itv = self.id_to_variable.keys()
ok_itv = other.id_to_variable.keys()
if sk_itv != ok_itv:
return f"id_to_variable keys: {sk_itv} != {ok_itv}"
# Feel free to augment this with more fancy diffing logic
# if needed for debugging
return "id_to_variable: unknown diff"
elif self.store_attr_mutations != other.store_attr_mutations:
sk_sam = self.store_attr_mutations.keys()
ok_sam = other.store_attr_mutations.keys()
if sk_sam != ok_sam:
return f"store_attr_mutations keys: {sk_sam} != {ok_sam}"
return "store_attr_mutations: unknown diff"
elif self.save_for_backward != other.save_for_backward:
return "save_for_backward"
elif self.tensor_hooks != other.tensor_hooks:
return "tensor_hooks"
else:
return None
def clone(self) -> "SideEffects":
"""Create a shallow copy"""
ref = self.output_graph_weakref()
assert ref is not None
return self.__class__(
output_graph=ref,
id_to_variable=dict(self.id_to_variable),
store_attr_mutations={
k: dict(v) for k, v in self.store_attr_mutations.items()
},
keepalive=list(self.keepalive),
save_for_backward=self.save_for_backward,
tensor_hooks=self.tensor_hooks,
)
def __contains__(self, item: Any) -> bool:
return id(item) in self.id_to_variable
def __getitem__(self, item: Any) -> VariableTracker:
return self.id_to_variable[id(item)]
def should_allow_side_effects_under_checkpoint(self) -> bool:
output_graph = self.output_graph_weakref()
return bool(
output_graph
and output_graph.current_tx.output.current_tracer.under_activation_checkpoint
and output_graph.current_tx.output.current_tracer.allow_side_effects_under_checkpoint
)
def should_allow_externally_visible_side_effects_in_subtracer(self) -> bool:
output_graph = self.output_graph_weakref()
return bool(
output_graph
and output_graph.current_tx.output.current_tracer.unsafe_allow_externally_visible_side_effects
)
def is_reconstructing_generator(self) -> bool:
output_graph = self.output_graph_weakref()
return bool(
output_graph
and output_graph.current_tx.output.current_tracer.is_reconstructing_generator
)
def check_allowed_side_effect(self, item: VariableTracker) -> bool:
from torch._dynamo.variables.misc import AutogradFunctionContextVariable
# People do things like self.dim = dim inside autograd.Function.
# These are benign.
if isinstance(item, AutogradFunctionContextVariable):
return True
if self.should_allow_externally_visible_side_effects_in_subtracer():
return True
if self.should_allow_side_effects_under_checkpoint():
return True
if self.is_reconstructing_generator():
# This is missing the case where one mutates a tensor. See
# test_generator.py::test_reconstruct_generator_tensor_mutation
raise SideEffectsError(
"Cannot reconstruct a generator with variable mutations. "
"Dynamo needs to fully exhaust the generator, which may cause "
"unintended variable modifications."
)
if not is_side_effect_safe(item.mutation_type):
# TODO plumb HOP information here
unimplemented_v2(
gb_type="HigherOrderOperator: Mutating a variable not in the current scope (SideEffects)",
context="",
explanation="This is not supported.",
hints=[],
)
return False
def store_attr(
self, item: VariableTracker, name: str, value: VariableTracker
) -> None:
assert self.is_attribute_mutation(item)
self.check_allowed_side_effect(item)
if item not in self.store_attr_mutations:
self.store_attr_mutations[item] = {}
self.store_attr_mutations[item][name] = value
def load_attr(
self,
item: VariableTracker,
name: str,
deleted_ok: bool = False,
check: bool = False,
) -> VariableTracker:
if check:
assert self.is_attribute_mutation(item)
result = self.store_attr_mutations[item][name]
if not deleted_ok and isinstance(result, variables.DeletedVariable):
unimplemented_v2(
gb_type="Attempted to read a deleted variable",
context=f"item: {item}, name: {name}",
explanation="",
hints=[*graph_break_hints.USER_ERROR],
)
return result
def store_cell(self, cellvar: VariableTracker, value: VariableTracker) -> None:
if cellvar.is_immutable():
unimplemented_v2(
gb_type="Write to immutable cell",
context=f"cellvar: {cellvar}, value: {value}",
explanation="Dynamo doesn't support writing to immutable/sourceless cell variables.",
hints=[*graph_break_hints.DIFFICULT],
)
assert isinstance(cellvar, variables.CellVariable)
assert isinstance(value, variables.VariableTracker)
self.store_attr(cellvar, "cell_contents", value)
def load_cell(self, cellvar: VariableTracker) -> VariableTracker:
assert isinstance(cellvar, variables.CellVariable)
if self.has_pending_mutation_of_attr(cellvar, "cell_contents"):
return self.load_attr(cellvar, "cell_contents", check=False)
if cellvar.pre_existing_contents:
return cellvar.pre_existing_contents
unimplemented_v2(
gb_type="Read uninitialized cell",
context=str(cellvar),
explanation="Attempted to read a cell variable that has not been populated yet.",
hints=[*graph_break_hints.USER_ERROR],
)
def load_global(self, gvar: VariableTracker, name: str) -> VariableTracker:
assert isinstance(gvar, variables.VariableTracker)
return self.load_attr(gvar, name)
def store_global(
self, gvar: VariableTracker, name: str, value: VariableTracker
) -> None:
assert isinstance(gvar, variables.VariableTracker)
assert isinstance(value, variables.VariableTracker)
self.store_attr(gvar, name, value)
@staticmethod
def cls_supports_mutation_side_effects(cls: type) -> bool:
return inspect.getattr_static(cls, "__getattribute__", None) in (
object.__getattribute__,
dict.__getattribute__,
set.__getattribute__,
frozenset.__getattribute__,
int.__getattribute__,
str.__getattribute__,
list.__getattribute__,
tuple.__getattribute__,
BaseException.__getattribute__,
)
def is_attribute_mutation(self, item: VariableTracker) -> bool:
return isinstance(item.mutation_type, AttributeMutation)
def has_pending_mutation(self, item: VariableTracker) -> bool:
return self.is_attribute_mutation(item) and bool(
self.store_attr_mutations.get(item)
)
def has_pending_mutation_of_attr(self, item: VariableTracker, name: str) -> bool:
return self.is_attribute_mutation(
item
) and name in self.store_attr_mutations.get(item, ())
def is_modified(self, item: VariableTracker) -> bool:
if item.is_immutable():
return False
if isinstance(item.mutation_type, (AttributeMutationNew, ValueMutationNew)):
return True
if isinstance(item, variables.UserDefinedObjectVariable):
# Checks if the underlying dict or tuple vt has been modified
return item in self.store_attr_mutations or item.is_underlying_vt_modified(
self
)
if self.is_attribute_mutation(item):
return item in self.store_attr_mutations
return item.mutation_type.is_modified # type: ignore[attr-defined]
def _track_obj(
self,
item: Any,
variable: VariableTracker,
mutation_type_cls: type = ValueMutationExisting,
) -> VariableTracker:
"""Start tracking an existing or new variable for mutation"""
if id(item) in self.id_to_variable:
raise AssertionError(
f"{variable} is already tracked for mutation. This could be "
"because you are not using VariableBuilder to construct "
"the variable tracker. "
f"Source of new object: {variable.source}. "
f"Source of previously tracked object: {self.id_to_variable[id(item)].source}."
)
variable.mutation_type = mutation_type_cls()
self.id_to_variable[id(item)] = variable
self.keepalive.append(item)
return variable
track_mutable = _track_obj
def track_object_existing(
self,
item: Any,
variable: VariableTracker,
) -> VariableTracker:
return self._track_obj(
item,
variable,
mutation_type_cls=AttributeMutationExisting,
)
def track_object_new(
self,
cls_source: Source,
user_cls: Any,
variable_cls: Any,
options: dict[str, Any],
) -> VariableTracker:
if user_cls is torch.autograd.function.FunctionCtx:
with warnings.catch_warnings(record=True):
obj = torch.autograd.Function()
else:
obj = object_new(user_cls)
variable = variable_cls(
obj,
mutation_type=AttributeMutationNew(cls_source),
**options,
)
self.id_to_variable[id(obj)] = variable
self.keepalive.append(obj)
return variable
def get_variable_cls(self, user_cls: type) -> type:
from torch.overrides import TorchFunctionMode
from .variables.ctx_manager import GenericContextWrappingVariable
from .variables.torch_function import TorchFunctionModeVariable
from .variables.user_defined import is_forbidden_context_manager
variable_cls: type[variables.UserDefinedObjectVariable] = (
variables.UserDefinedObjectVariable
)
if issubclass(
user_cls, TorchFunctionMode
) and TorchFunctionModeVariable.is_supported_torch_function_mode(user_cls):
variable_cls = TorchFunctionModeVariable
elif (
hasattr(user_cls, "__enter__")
and hasattr(user_cls, "__exit__")
and not is_forbidden_context_manager(user_cls)
):
variable_cls = GenericContextWrappingVariable
elif issubclass(user_cls, torch.nn.Module):
variable_cls = variables.UnspecializedNNModuleVariable
elif issubclass(user_cls, (dict, collections.OrderedDict)):
variable_cls = variables.UserDefinedDictVariable
elif issubclass(user_cls, (set, frozenset)):
variable_cls = variables.UserDefinedSetVariable
elif issubclass(user_cls, tuple):
variable_cls = variables.UserDefinedTupleVariable
elif issubclass(user_cls, list):
variable_cls = variables.UserDefinedListVariable
elif issubclass(user_cls, MutableMapping):
variable_cls = variables.MutableMappingVariable
elif is_frozen_dataclass(user_cls):
variable_cls = FrozenDataClassVariable
elif issubclass(user_cls, BaseException):
variable_cls = variables.UserDefinedExceptionObjectVariable
assert issubclass(variable_cls, variables.UserDefinedObjectVariable)
return variable_cls
def get_example_value(
self,
base_cls_vt: VariableTracker,
cls_vt: VariableTracker,
init_args: list[VariableTracker],
) -> Any:
user_cls = cls_vt.value # type: ignore[attr-defined]
if issubclass(user_cls, torch.nn.Module):
# TODO(anijain2305) - Is it possible to remove this specialization?
obj = nn_module_new(user_cls)
else:
if isinstance(base_cls_vt, variables.BuiltinVariable):
base_cls = base_cls_vt.fn
elif isinstance(base_cls_vt, variables.UserDefinedClassVariable):
base_cls = base_cls_vt.value
else:
raise RuntimeError(f"Unexpected base_cls_vt {base_cls_vt}")
assert variables.UserDefinedClassVariable.is_supported_new_method(
base_cls.__new__
)
# TODO(anijain2305) - Consider adding get_example_value method to
# each VT to get an example value for all args. As we expand the
# scope to other __new__ methods, we might need to call __new__ with
# init_args (like functools.partial)
# init_args = [arg.get_example_value() for arg in init_args]
# obj = base_cls.__new__(user_cls, *init_args)
obj = base_cls.__new__(user_cls)
return obj
def track_new_user_defined_object(
self,
base_cls_vt: VariableTracker,
cls_vt: VariableTracker,
init_args: list[VariableTracker],
) -> VariableTracker:
"""
Creates a UserDefinedObjectVariable (or its subclass) variable tracker
and mark it for attribute mutation tracking.
Also records the variable trackers to call __new__ method on
reconstruction. Roughly, the reconstruction looks like this
base_cls_vt.__new__(user_cls, *init_args)
"""
cls_source = cls_vt.source
user_cls = cls_vt.value # type: ignore[attr-defined]
variable_cls = self.get_variable_cls(user_cls)
obj = self.get_example_value(base_cls_vt, cls_vt, init_args)
variable = variable_cls(
obj,
cls_source=cls_vt.source,
base_cls_vt=base_cls_vt,
init_args=init_args,
mutation_type=AttributeMutationNew(cls_source),
)
self.id_to_variable[id(obj)] = variable
self.keepalive.append(obj)
return variable
def track_cell_new(
self,
) -> VariableTracker:
obj = object()
variable = variables.CellVariable(
mutation_type=AttributeMutationNew(),
)
self.id_to_variable[id(obj)] = variable
self.keepalive.append(obj)
return variable
def track_cell_existing(
self, source: Optional[Source], cell: CellType, contents: VariableTracker
) -> VariableTracker:
variable = variables.CellVariable(
# We don't support mutation to cell without source because we need
# source to properly codegen the mutations.
mutation_type=None if source is None else AttributeMutationExisting(),
pre_existing_contents=contents,
source=source,
)
self.id_to_variable[id(cell)] = variable
self.keepalive.append(cell)
return variable
def track_global_existing(self, source: Source, item: Any) -> VariableTracker:
variable = variables.NewGlobalVariable(
mutation_type=AttributeMutationExisting(),
source=source,
)
self.id_to_variable[id(item)] = variable
self.keepalive.append(item)
return variable
def track_save_for_backward(
self, ctx: VariableTracker, args: list[VariableTracker]
) -> None:
assert isinstance(ctx, variables.AutogradFunctionContextVariable)
self.save_for_backward.append((ctx, args))
def track_runahead_tensor_and_symvar_side_effects(
self, other: "SideEffects"
) -> None:
# In higher order ops we want to keep track of tensors seen in the
# speculate_subgraph so that we don't lift them again as a new input in
# other speculate_subgraph or in the root tracer.
for other_item in other.keepalive:
other_id = id(other_item)
other_variable = other.id_to_variable[other_id]
if other_id not in self.id_to_variable and isinstance(
other_variable, (variables.TensorVariable, variables.SymNodeVariable)
):
self.track_object_existing(other_item, other_variable)
def prune_dead_object_new(self, tx: "InstructionTranslatorBase") -> None:
# Avoid VT cycles from e.g., recursive function.
visited: set[VariableTracker] = set()
live_new_objects: set[VariableTracker] = set()
def visit(var: VariableTracker) -> None:
if var in visited:
return
visited.add(var)
# Object may have been mutated, store this mutation.
if isinstance(var.mutation_type, AttributeMutationNew):
live_new_objects.add(var)
# It's possible that we have mutated the value of this variable
# to be another one. The new value is in store_attr_mutations.
# Also recurse through the new value to detect alive AttributeMutationNew.
if var in self.store_attr_mutations:
VariableTracker.visit(
visit, # noqa: F821
self.store_attr_mutations[var],
)
def is_live(var: VariableTracker) -> bool:
if isinstance(var.mutation_type, AttributeMutationNew):
return var in live_new_objects
return True
pre_existing_vars = [
var
for var in self.id_to_variable.values()
if not isinstance(var.mutation_type, AttributeMutationNew)
]
# The only live side effects come from returns (tx.stack), any intermediates
# during a graph break (tx.symbolic_locals), and mutation on pre-existing variables.
# Recursively visit Variables and see if any of them have been mutated.
init_live_vars = []
# gather stack/symbolic_locals for all tx's up the chain
cur_tx: Optional[InstructionTranslatorBase] = tx
while cur_tx is not None:
init_live_vars.extend([cur_tx.stack, cur_tx.symbolic_locals])
cur_tx = cur_tx.parent
VariableTracker.visit(
visit,
# TODO track from all possible sources.
init_live_vars
+ [
pre_existing_vars,
tx.output.backward_state,
self.tensor_hooks,
],
)
# Manually release the self-referential function, which indirectly
# captures certain `VariableTracker` and affects parts of PT test/logic
# that are sensitive to when certain objects get released.
del visit
# NB: cell variable handling.is tricky.
# cell variables must stay alive if any NestedUserFunctionVariable
# are live. "visit"-ing the NestedUserFunctionVariable visits
# the .closures field, from which we will see if we need to keep
# any mutations to cell variables alive.
self.id_to_variable = {
k: v for k, v in self.id_to_variable.items() if is_live(v)
}
self.store_attr_mutations = {
k: v for k, v in self.store_attr_mutations.items() if is_live(k)
}
def mutation(self, var: VariableTracker) -> None:
if var in self.ignore_mutation_on_these_variables:
return
self.check_allowed_side_effect(var)
if isinstance(var.mutation_type, ValueMutationExisting):
var.mutation_type.is_modified = True
if (
var.source
and isinstance(var, variables.ConstDictVariable)
and not isinstance(var, variables.SetVariable)
):
self._has_existing_dict_mutation = True
def has_existing_dict_mutation(self) -> bool:
return self._has_existing_dict_mutation
def _get_modified_vars(self) -> list[VariableTracker]:
return [var for var in self.id_to_variable.values() if self.is_modified(var)]
def codegen_save_tempvars(self, cg: PyCodegen) -> None:
# We must codegen modified VT to their source by default, so that
# mutation and aliasing are properly accounted for.
#
# Since newly constructed objects don't have a source, we manually
# codegen their construction and store them to a newly assigned local
# source. Note that `ValueMutationNew` isn't tracked by SideEffects.
for var in self._get_modified_vars():
if not isinstance(var.mutation_type, AttributeMutationNew):
assert var.source is not None
continue
if isinstance(var, variables.CellVariable):
# Cells created in the root frame are created either by
# `MAKE_CELL` or by them being in `co_cellvars`, so we only emit
# `make_cell` for the non-root-frame cells here.
# TODO generalize this so we never need to call `make_cell`.
if var.local_name is None:
cg.add_push_null(
lambda: cg.load_import_from(utils.__name__, "make_cell")
)
cg.extend_output(create_call_function(0, False))
cg.add_cache(var)
var.source = LocalSource(cg.tempvars[var]) # type: ignore[attr-defined]
elif var.source is None:
# pyrefly: ignore # bad-assignment
var.source = LocalCellSource(var.local_name)
elif isinstance(var, variables.TensorVariable):
# NOTE: for historical reasons we never assigned local sources
# to newly constructed tensor object, so we keep it that way.
# They are always loaded from output of the fx graph, so one can
# think of it as having a "OutputGraphSource" for codegen
# purposes.
#
# However, tensor subclass objects are different, because the
# reconstruction logic in `PyCodegen` loads the data tensor from
# graph output and then calls `as_subclass`, meaning we must
# assign a source to it to ensure we only reconstruct one
# subclass instance.
if isinstance(
var, variables.torch_function.TensorWithTFOverrideVariable
):
# Don't codegen from temp source assigned from the 1st pass.
cg(var, allow_cache=False)
cg.add_cache(var)
# `add_cache` generates STORE and consumes TOS, but we never
# cleared it. TODO move this call into `add_cache`
cg.clear_tos()
var.source = LocalSource(cg.tempvars[var])
elif isinstance(var, variables.AutogradFunctionContextVariable):
unimplemented_v2(
gb_type="AutogradFunctionContextVariable escaped Dynamo-traced region",
context="",
explanation="We cannot reconstruct a torch.autograd.Function's context object.",
hints=[],
)
else:
# Reconstruct the bytecode for
# base_cls.__new__(user_cls, *args)
if isinstance(var, variables.UserDefinedObjectVariable):
def load_new_method() -> None:
# pyrefly: ignore # missing-attribute
assert var.base_cls_vt is not None
cg(var.base_cls_vt) # type: ignore[attr-defined]
cg.extend_output([cg.create_load_attr("__new__")])
cg.add_push_null(load_new_method)
else:
cg.add_push_null(
lambda: cg.load_import_from(utils.__name__, "object_new")
)
assert var.mutation_type.cls_source is not None
cg(var.mutation_type.cls_source)
# Generate the args to the __new__ method
for arg in var.init_args: # type: ignore[attr-defined]
cg(arg)
# Call the __new__ method
cg.extend_output(create_call_function(1 + len(var.init_args), False)) # type: ignore[attr-defined]
cg.add_cache(var)
var.source = LocalSource(cg.tempvars[var])
for ctx, args in self.save_for_backward:
cg(ctx.source)
cg.load_method("save_for_backward")
for arg in args:
cg(arg)
cg.extend_output(
[
*create_call_method(len(args)),
create_instruction("POP_TOP"),
]
)
def register_hook(
self,
tensor: "variables.TensorVariable",
hook: VariableTracker,
handle: "variables.RemovableHandleVariable",
name: str,
) -> None:
assert isinstance(tensor, variables.TensorVariable)
assert isinstance(hook, variables.VariableTracker)
assert (
isinstance(handle, variables.RemovableHandleVariable)
and handle.is_mutable()
)
assert hasattr(torch.Tensor, name)
idx = len(self.tensor_hooks.keys())
# duplicate index possible because of self.remove_hook()
while idx in self.tensor_hooks:
idx += 1
self.tensor_hooks[idx] = (tensor, hook, handle, name)
assert not handle.idx
handle.idx = idx
def remove_hook(self, idx: int) -> None:
del self.tensor_hooks[idx]
def codegen_hooks(self, cg: PyCodegen) -> None:
for (
tensor,
hook,
handle,
name,
) in self.tensor_hooks.values():
# Note: [On tensor.register_hook]
#
# register_hook on a tensor, AKA backward hooks, have slightly nuanced differences in how they are implemented
# when it comes to hooks on objects with sources (inputs, params) vs objects without sources (intermediaries).
#
# For tensors with a source, we bypass direct inclusion of register_hook calls in the graph.
# Instead, these are tracked and stashed as a global variable, enabling their association with tensors in
# the residuals. During dynamo's frame creation, these hooks are invoked seamlessly on known reconstructible/fetch-able
# tensors. Because a source indicates knowledge of this object outside the torch compile region, and
# because we are running residuals firmly before .backward() can be run, it is sound to invoke
# `register_hook` on a known tensor.
#
# For tensors without a source, we support a limited subset of hooks. Global functions only, and
# compiled_autograd must be enabled or we will graph break.
#
# Handling the Handle: When a user retains the register_hook result in a handle, we intercept the
# STORE_FAST operation to record the user-designated local variable name. This ensures the reconstructed
# bytecode retains this name. If no handle is defined, we simply pop the generated value to keep the
# stack intact.
#
# Dynamo Tensor Hooks Workflow:
# - Functions passed to register_hook are lifted globally.
# - For tensors with sources:
# - In the "side_effects" phase of codegen, we iterate over tensors with hooks to:
# - Generate the tensor.
# - Issue a register_hook call on the tensor, linking to the globally stored function.
# - Incorporate a handle if one was established in the eager phase.
# - For tensors without sources:
# - We don't generate any instructions for registering a hook.
# - Handles from intermediary hooks are NYI.
# - We produce a call function that utilizes the trace_wrapped higher order op, closing over it.
# - We then manually insert the call function above into the graph.
# - The handle's exact user-specified name, "user_code_variable_name", is discerned and associated during STORE_FAST.
assert tensor.source, "Hooks on non input tensors NYI - should not get here"
def gen_fn() -> None:
cg(tensor)
cg.extend_output([cg.create_load_attr(name)])
cg.add_push_null(gen_fn)
cg(hook)
cg.extend_output(create_call_function(1, False))
# Adding the handle to the cache means RemovableHandleVariable().reconstruct() will
# be associated with the return value of register_hook(). This consumes the top of stack.
cg.add_cache(handle)
def get_ca_final_callbacks_var(self) -> "variables.ListVariable":
from .variables.base import ValueMutationNew
if self.ca_final_callbacks_var is None:
self.ca_final_callbacks_var = variables.ListVariable(
[], mutation_type=ValueMutationNew()
)
return self.ca_final_callbacks_var
def codegen_update_mutated(self, cg: PyCodegen) -> None:
suffixes = []
for var in self._get_modified_vars():
if isinstance(var, variables.ListVariable):
# old[:] = new
cg(var, allow_cache=False) # Don't codegen via source
cg(var.source) # type: ignore[attr-defined]
cg.extend_output(
[
cg.create_load_const(None),
cg.create_load_const(None),
create_instruction("BUILD_SLICE", arg=2),
]
)
suffixes.append([create_instruction("STORE_SUBSCR")])
elif isinstance(var, variables.lists.DequeVariable):
# For limited maxlen, the order of operations matter for side
# effect, but we currently don't track the order, so no support.
if not (
isinstance(var.maxlen, variables.ConstantVariable)
and var.maxlen.value is None
):
unimplemented_v2(
gb_type="Side effect on existing deque with limited maxlen",
context="",
explanation="This is not supported.",
hints=[
"Don't use a deque with `maxlen` specified.",
],
)
# old.extend(new), this runs last
cg(var.source)
cg.load_method("extend")
cg(var, allow_cache=False) # Don't codegen via source
suffixes.append(
[
*create_call_method(1),
create_instruction("POP_TOP"),
]
)
# old.clear(), this runs first
cg(var.source)
cg.load_method("clear")
suffixes.append(
[
*create_call_method(0),
create_instruction("POP_TOP"),
]
)
elif isinstance(var, variables.ConstDictVariable):
# Reconstruct works as follow:
# (1) Skip codegen if there are no new items
# (2) codegen(...) each pair of key/value
# (3) create a new dictionary with the pairs of key/values above
# (4) clear the original dictionary
# + only if a key was removed from the input dict
# (5) update the original dictionary with the dict created in (2)
if var.has_new_items():
cg(var.source) # type: ignore[attr-defined]
cg.load_method("update")
cg(var, allow_cache=False) # Don't codegen via source
if var.should_reconstruct_all:
cg(var.source) # type: ignore[attr-defined]
cg.load_method("clear")
suffixes.append(
[
*create_call_method(1), # update
create_instruction("POP_TOP"),
]
)
if var.should_reconstruct_all:
# clear will appear before "update" as the suffixes are
# applied in reverse order.
suffixes.append(
[
*create_call_method(0), # clear
create_instruction("POP_TOP"),
]
)
elif isinstance(
var, variables.torch_function.TorchFunctionModeStackVariable
):
# Needed in the finally block for stack restoration
cg.add_push_null(
lambda: cg.load_import_from(
utils.__name__, "get_torch_function_mode_stack"
)
)
cg.call_function(0, False)
name = variables.torch_function.get_prev_stack_var_name()
cg.code_options["co_varnames"] += (name,)
cg.append_output(create_instruction("STORE_FAST", argval=name))
cg.add_push_null(
lambda: cg.load_import_from(
utils.__name__, "set_torch_function_mode_stack"
)
)
cg.foreach(var.symbolic_stack)
cg.append_output(
create_instruction("BUILD_LIST", arg=len(var.symbolic_stack))
)
cg.call_function(1, False)
cg.append_output(create_instruction("POP_TOP"))
elif isinstance(var, variables.CellVariable) and var.local_name is not None:
# Emit more readable and performant bytecode.
# TODO generalize this for cells created during inlining.
if var in self.store_attr_mutations:
contents_var = self.load_cell(var)
cg(contents_var)
suffixes.append([cg.create_store_deref(var.local_name)])
elif self.is_attribute_mutation(var):
if isinstance(
var,
variables.UserDefinedDictVariable,
# pyrefly: ignore # bad-argument-type
) and self.is_modified(var._dict_vt):
# Do dict related update manually here. The store_attr
# mutations will be applied later.
varname_map = {}
for name in _manual_dict_setitem.__code__.co_varnames:
varname_map[name] = cg.tx.output.new_var()
try:
mro_index = type(var.value).__mro__.index(
collections.OrderedDict
)
except ValueError:
mro_index = type(var.value).__mro__.index(dict)
cg.extend_output(
[
create_instruction("LOAD_CONST", argval=mro_index),
create_instruction(
"STORE_FAST", argval=varname_map["mro_index"]
),
]
)
cg(var.source) # type: ignore[attr-defined]
cg.extend_output(
[
create_instruction(
"STORE_FAST", argval=varname_map["dict_to"]
)
]
)
# pyrefly: ignore # bad-argument-type
cg(var._dict_vt, allow_cache=False) # Don't codegen via source
cg.extend_output(
[
create_instruction(
"STORE_FAST", argval=varname_map["dict_from"]
)
]
)
dict_update_insts = bytecode_from_template(
_manual_dict_setitem, varname_map=varname_map
)
suffixes.append(
[
*dict_update_insts,
create_instruction("POP_TOP"),
]
)
elif isinstance(
var,
variables.UserDefinedListVariable,
# pyrefly: ignore # bad-argument-type
) and self.is_modified(var._list_vt):
# Update the list to the updated items. Be careful in
# calling the list methods and not the overridden methods.
varname_map = {}
for name in _manual_list_update.__code__.co_varnames:
varname_map[name] = cg.tx.output.new_var()
cg(var.source) # type: ignore[attr-defined]
cg.extend_output(
[
create_instruction(
"STORE_FAST", argval=varname_map["list_to"]
)
]
)
# pyrefly: ignore # bad-argument-type
cg(var._list_vt, allow_cache=False) # Don't codegen via source
cg.extend_output(
[
create_instruction(
"STORE_FAST", argval=varname_map["list_from"]
)
]
)
list_update_insts = bytecode_from_template(
_manual_list_update, varname_map=varname_map
)
suffixes.append(
[
*list_update_insts,
create_instruction("POP_TOP"),
]
)
# Applying mutations involves two steps: 1) Push all
# reconstructed objects onto the stack. 2) Call STORE_ATTR to
# apply the mutations.
#
# Dynamo must ensure that mutations are applied in the same
# order as in the original program. Therefore, two reverse
# operations occur below.
#
# The first reverse operation concerns `suffixes`. We apply
# suffixes in reverse order due to the way Python handles the
# stack. In Step 1, we push all reconstructed objects onto the
# stack, but the item at the top of the stack refers to the last
# attribute in the mutation order. If not fixed, this will apply
# the mutations of attributes in the reverse order. To account
# for this reversal, we iterate through the mutable attributes
# in reverse order.
for name, value in reversed(
self.store_attr_mutations.get(var, {}).items()
):
if isinstance(var, variables.NewGlobalVariable):
cg.tx.output.update_co_names(name)
cg(value)
assert isinstance(var.source, GlobalSource) # type: ignore[attr-defined]
suffixes.append(
[create_instruction("STORE_GLOBAL", argval=name)]
)
elif isinstance(value, variables.DeletedVariable):
if isinstance(
var.mutation_type, AttributeMutationExisting
) and hasattr(getattr(var, "value", None), name):
cg.tx.output.update_co_names(name)
cg(var.source)
suffixes.append(
[create_instruction("DELETE_ATTR", argval=name)]
)
elif isinstance(
var, variables.UserDefinedObjectVariable
) and var.should_skip_descriptor_setter(name):
cg.add_push_null(
lambda: cg.load_import_from(
utils.__name__, "object_setattr_ignore_descriptor"
)
)
cg(var.source) # type: ignore[attr-defined]
cg(variables.ConstantVariable(name))
cg(value)
suffixes.append(
[
*create_call_function(3, False),
create_instruction("POP_TOP"),
]
)
elif (
isinstance(var, variables.UserDefinedObjectVariable)
and var.needs_slow_setattr()
):
# __setattr__ is defined on this object, so call object.__setattr__ directly
cg.load_import_from("builtins", "object")
cg.load_method("__setattr__")
cg(var.source) # type: ignore[attr-defined]
cg(variables.ConstantVariable(name))
cg(value)
suffixes.append(
[*create_call_method(3), create_instruction("POP_TOP")]
)
else:
cg.tx.output.update_co_names(name)
cg(value)
cg(var)
suffixes.append([create_instruction("STORE_ATTR", argval=name)])
elif isinstance(var, variables.ListIteratorVariable):
for _ in range(var.index):
cg.add_push_null(
lambda: cg.load_import_from(utils.__name__, "iter_next")
)
cg(var.source) # type: ignore[attr-defined]
cg.call_function(1, False)
cg.pop_top()
elif isinstance(var, variables.RandomVariable):
# set correct random seed state
def gen_fn() -> None:
cg(var.source) # type: ignore[attr-defined]
cg.load_attr("setstate")
cg.add_push_null(gen_fn)
cg(var.wrap_state(var.random.getstate()))
suffixes.append(
[
*create_call_function(1, False), # setstate
create_instruction("POP_TOP"),
]
)
else:
raise AssertionError(type(var))
# do all the actual mutations at the very end to handle dependencies
for suffix in reversed(suffixes):
cg.extend_output(suffix)
def is_empty(self) -> bool:
return not (
any(map(self.is_modified, self.id_to_variable.values()))
or self.tensor_hooks
or self.save_for_backward
or self.tensor_hooks
)
def clear(self) -> None:
self.keepalive.clear()
self.id_to_variable.clear()
@contextlib.contextmanager
def allow_side_effects_under_checkpoint(
tx: "InstructionTranslatorBase",
) -> Generator[None, None, None]:
assert tx.output.current_tracer.under_activation_checkpoint
orig_val = tx.output.current_tracer.allow_side_effects_under_checkpoint
try:
tx.output.current_tracer.allow_side_effects_under_checkpoint = True
yield
finally:
tx.output.current_tracer.allow_side_effects_under_checkpoint = orig_val
@contextlib.contextmanager
def allow_externally_visible_side_effects_in_subtracer(
tx: "InstructionTranslatorBase",
) -> Generator[None, None, None]:
orig_val = tx.output.current_tracer.unsafe_allow_externally_visible_side_effects
try:
tx.output.current_tracer.unsafe_allow_externally_visible_side_effects = True
yield
finally:
tx.output.current_tracer.unsafe_allow_externally_visible_side_effects = orig_val
@contextlib.contextmanager
def disallow_side_effects_in_generator(
tx: "InstructionTranslatorBase",
) -> Generator[None, None, None]:
orig_val = tx.output.current_tracer.is_reconstructing_generator
try:
tx.output.current_tracer.is_reconstructing_generator = True
yield
finally:
tx.output.current_tracer.is_reconstructing_generator = orig_val