Files
pytorch/torch/fx/traceback.py
Shangdi Yu 75e2a9fae3 [annotate] add annotate_fn function decorator (#165703)
Example usage:

```
        @fx_traceback.annotate_fn({"pp_stage": 1})
        def example_function(x):
            return x * x

        class SimpleLinear(nn.Module):
            def __init__(self):
                super().__init__()
                self.linear = nn.Linear(3, 2)

            def forward(self, x):
                with fx_traceback.annotate({"pp_stage": 0}):
                    y = self.linear(x)
                y = example_function(y)
                return y - 1
```

Pull Request resolved: https://github.com/pytorch/pytorch/pull/165703
Approved by: https://github.com/SherlockNoMad
2025-10-17 20:10:53 +00:00

448 lines
14 KiB
Python

# mypy: allow-untyped-defs
import copy
import logging
import traceback
from contextlib import contextmanager
from enum import Enum
from typing import Any, Optional, Union
from torch._utils_internal import signpost_event
from ._compatibility import compatibility
from .graph import Graph
from .graph_module import GraphModule
from .node import Node
log = logging.getLogger(__name__)
__all__ = [
"annotate",
"annotate_fn",
"preserve_node_meta",
"has_preserved_node_meta",
"set_stack_trace",
"set_grad_fn_seq_nr",
"reset_grad_fn_seq_nr",
"format_stack",
"set_current_meta",
"get_current_meta",
"NodeSource",
"NodeSourceAction",
"get_graph_provenance_json",
]
current_meta: dict[str, Any] = {}
should_preserve_node_meta = False
@compatibility(is_backward_compatible=False)
class NodeSourceAction(Enum):
CREATE = "create"
REPLACE = "replace"
@compatibility(is_backward_compatible=False)
class NodeSource:
"""
NodeSource is a data structure that contains the provenance information of a node.
If node `a` is created from node `b`, then `a.meta["from_node"]` may contain NodeSource(b).
"""
class NodeInfo:
def __init__(self, name: str, target: str, graph_id: int):
self.name = name
self.target = target
self.graph_id = graph_id
pass_name: str
action: list["NodeSourceAction"]
from_node: list["NodeSource"]
node_info: Optional["NodeInfo"]
_dict: Optional[dict[str, Any]]
_action_string: Optional[str]
def __init__(
self,
node: Optional[Node],
pass_name: str = "",
action: Optional[Union["NodeSourceAction", list["NodeSourceAction"]]] = None,
):
self.pass_name = pass_name
if action is None:
action = []
elif not isinstance(action, list):
action = [action]
for a in action:
assert isinstance(a, NodeSourceAction)
self.action = action
if node:
self.node_info = self.NodeInfo(
name=node.name, target=str(node.target), graph_id=id(node.graph)
)
self.from_node = (
copy.deepcopy(node.meta["from_node"])
if "from_node" in node.meta
else []
)
else:
self.node_info = None
self.from_node = []
# cache the action string and dict representation for performance.
self._action_string: Optional[str] = None
self._dict: Optional[dict[str, Any]] = None
@property
def name(self) -> str:
return self.node_info.name if self.node_info else ""
@property
def target(self) -> str:
return self.node_info.target if self.node_info else ""
@property
def graph_id(self) -> int:
return self.node_info.graph_id if self.node_info else -1
def __repr__(self):
return self.print_readable()
def _get_action_string(self):
if self._action_string is None:
self._action_string = "+".join([a.name.lower() for a in self.action])
return self._action_string
def print_readable(self, indent=0):
if indent > 9:
return ""
result = ""
action_string = self._get_action_string()
result += (
" " * indent * 4
+ f"(name={self.name}, pass_name={self.pass_name}, action={action_string}, graph_id={self.graph_id})\n"
)
for item in self.from_node:
result += item.print_readable(indent + 1)
return result
def to_dict(self) -> dict:
if self._dict is None:
# Convert the object to a dictionary
action_string = self._get_action_string()
self._dict = {
"name": self.name,
"target": self.target,
"graph_id": self.graph_id,
"pass_name": self.pass_name,
"action": action_string,
"from_node": [node.to_dict() for node in self.from_node],
}
assert self._dict is not None
return self._dict
def __eq__(self, other: object):
if not isinstance(other, NodeSource):
return False
return self.to_dict() == other.to_dict()
def __hash__(self):
# Create a hash based on the dictionary representation
# We need to convert the dict to a hashable form
def _make_hashable(obj):
if isinstance(obj, dict):
return tuple(sorted((k, _make_hashable(v)) for k, v in obj.items()))
elif isinstance(obj, list):
return tuple(_make_hashable(item) for item in obj)
else:
return obj
return hash(_make_hashable(self.to_dict()))
@classmethod
def _from_dict(cls, d: Optional[dict]) -> Optional["NodeSource"]:
"""
Recursively deserialize from_node metadata from dictionary data.
It is used to deserialize the from_node field from serialized metadata.
Please use constructor NodeSource(node, ...) to create a NodeSource object.
"""
if d is None:
return None
assert isinstance(d, dict), f"Expected a dict, got {type(d)}"
# Create a NodeSource object directly without going through the constructor
# to avoid issues with graph ID and node creation
node_source = NodeSource.__new__(NodeSource)
# Reset the cached properties
node_source._action_string = None
node_source._dict = None
# Set the basic attributes
node_source.pass_name = d.get("pass_name", "")
# Parse action string back to NodeSourceAction enum list
action_str = d.get("action", "")
actions = []
if action_str:
for action_name in action_str.split("+"):
if action_name.upper() == "CREATE":
actions.append(NodeSourceAction.CREATE)
elif action_name.upper() == "REPLACE":
actions.append(NodeSourceAction.REPLACE)
node_source.action = actions
# Create the NodeInfo object directly
if "name" in d and "target" in d and "graph_id" in d:
node_info = NodeSource.NodeInfo(
d.get("name", ""), d.get("target", ""), d.get("graph_id", -1)
)
node_source.node_info = node_info
else:
node_source.node_info = None
# Recursively deserialize nested from_node
if d.get("from_node", None) is not None:
node_source.from_node = [
result
for fn in d.get("from_node", [])
if (result := cls._from_dict(fn)) is not None
]
else:
node_source.from_node = []
return node_source
@compatibility(is_backward_compatible=False)
@contextmanager
def preserve_node_meta(enable=True):
global should_preserve_node_meta
global current_meta
saved_should_preserve_node_meta = should_preserve_node_meta
# Shallow copy is OK since fields of current_meta are not mutated
saved_current_meta = current_meta.copy()
try:
should_preserve_node_meta = enable
yield
finally:
should_preserve_node_meta = saved_should_preserve_node_meta
current_meta = saved_current_meta
@compatibility(is_backward_compatible=False)
def set_stack_trace(stack: list[str]):
global current_meta
if should_preserve_node_meta and stack:
current_meta["stack_trace"] = "".join(stack)
@compatibility(is_backward_compatible=False)
@contextmanager
def annotate(annotation_dict: dict):
"""
Temporarily adds custom annotations to the current tracing context.
The fx_node produced from this tracing context will have the
custom annotations in node.metadata["custom"] field.
This context manager allows you to insert arbitrary metadata into the PT2
tracing system by updating the global `current_meta["custom"]` dictionary.
The annotations are automatically reverted after the context exits.
This is intended for advanced users who need to attach additional metadata to the fx nodes
(e.g., for debugging, analysis, or external tooling) during export tracing.
Note:
This API is **not backward compatible** and may evolve in future releases.
Note:
This API is not compatible with fx.symbolic_trace or jit.trace. It's intended
to be used with PT2 family of tracers, e.g. torch.export and dynamo.
Args:
annotation_dict (dict): A dictionary of custom key-value pairs to inject
into the FX trace metadata.
Example:
After exiting the context, custom annotations are removed.
>>> with annotate({"source": "custom_pass", "tag": 42}):
... pass # Your computation here
"""
global current_meta
has_custom = "custom" in current_meta
old_custom = copy.copy(current_meta.get("custom", {}))
try:
if not has_custom:
current_meta["custom"] = {}
# Update with all key-value pairs from the input dict
current_meta["custom"].update(annotation_dict)
yield
finally:
if has_custom:
# Restore the original custom dict
current_meta["custom"] = old_custom
else:
del current_meta["custom"]
@compatibility(is_backward_compatible=False)
def annotate_fn(annotation_dict: dict):
"""
A decorator that wraps a function with the annotate context manager.
Use this when you want to annotate an entire function instead of a specific code block.
Note:
This API is **not backward compatible** and may evolve in future releases.
Note:
This API is not compatible with fx.symbolic_trace or jit.trace. It's intended
to be used with PT2 family of tracers, e.g. torch.export and dynamo.
Args:
annotation_dict (dict): A dictionary of custom key-value pairs to inject
into the FX trace metadata for all operations in the function.
Example:
All operations in my_function will have {"pp_stage": 1} in their metadata.
>>> @annotate_fn({"pp_stage": 1})
... def my_function(x):
... return x + 1
"""
from functools import wraps
def decorator(func):
@wraps(func)
def wrapper(*args, **kwargs):
with annotate(annotation_dict):
return func(*args, **kwargs)
return wrapper
return decorator
@compatibility(is_backward_compatible=False)
def set_grad_fn_seq_nr(seq_nr):
global current_meta
if should_preserve_node_meta:
# The seq_nr is captured by eager mode in the grad_fn during forward
current_meta["grad_fn_seq_nr"] = current_meta.get("grad_fn_seq_nr", []) + [
seq_nr
]
current_meta["in_grad_fn"] = current_meta.get("in_grad_fn", 0) + 1
@compatibility(is_backward_compatible=False)
def reset_grad_fn_seq_nr():
# NB: reset state properly, this would be helpful towards supporting
# reentrant autograd if we actually wanted to do that.
global current_meta
if should_preserve_node_meta:
current_level = current_meta.get("in_grad_fn", 0)
assert current_level > 0
if current_level == 1:
del current_meta["in_grad_fn"]
del current_meta["grad_fn_seq_nr"]
else:
current_meta["in_grad_fn"] = current_level - 1
current_meta["grad_fn_seq_nr"] = current_meta["grad_fn_seq_nr"][:-1]
@compatibility(is_backward_compatible=False)
def format_stack() -> list[str]:
if should_preserve_node_meta:
return [current_meta.get("stack_trace", "")]
else:
# fallback to traceback.format_stack()
return traceback.format_list(traceback.extract_stack()[:-1])
@compatibility(is_backward_compatible=False)
def has_preserved_node_meta() -> bool:
return should_preserve_node_meta
@compatibility(is_backward_compatible=False)
@contextmanager
def set_current_meta(node, pass_name=""):
global current_meta
if should_preserve_node_meta and node.meta:
saved_meta = current_meta
try:
current_meta = node.meta.copy()
# Update the "from_node" field in current_meta for provenance tracking.
# Instead of appending, overwrite the "from_node" field because current_meta
# will be assigned to the new node. The new NodeSource(node, ...) will
# include the information from the previous current_meta["from_node"].
current_meta["from_node"] = [
NodeSource(node, pass_name, NodeSourceAction.CREATE)
]
yield
finally:
current_meta = saved_meta
else:
yield
@compatibility(is_backward_compatible=False)
def get_current_meta() -> dict[str, Any]:
return current_meta
@compatibility(is_backward_compatible=False)
def get_graph_provenance_json(graph: Graph) -> dict[str, Any]:
"""
Given an fx.Graph, return a json that contains the provenance information of each node.
"""
try:
provenance_tracking_json = {}
for node in graph.nodes:
if node.op == "call_function":
provenance_tracking_json[node.name] = (
[source.to_dict() for source in node.meta["from_node"]]
if "from_node" in node.meta
else []
)
return provenance_tracking_json
except Exception as e:
# Since this is just debugging, it should never interfere with regular
# program execution, so we use this try-except to guard against any error
signpost_event(
"inductor",
"provenance_tracking_error",
{
"function": "get_graph_provenance_json",
"error_msg": str(e),
"stack_trace": traceback.format_exc(),
},
)
return {}
def _get_custom_metadata(gm: GraphModule) -> str:
assert isinstance(gm, GraphModule)
def helper(gm: GraphModule):
custom_metadata = []
for node in gm.graph.nodes:
if hasattr(node, "meta") and node.meta.get("custom", None):
custom_metadata.append((node.op, node.name, node.meta["custom"]))
if node.op == "get_attr" and isinstance(
getattr(gm, node.target), GraphModule
):
custom_metadata.append(helper(getattr(gm, node.target)))
return custom_metadata
return "\n".join(str(x) for x in helper(gm))