Files
pytorch/caffe2/python/ideep/operator_fallback_op_test.py
jgong5 c755616e00 Enable Detectron model inference for CPU and MKL-DNN paths (#10157)
Summary:
1. Support ops needed for inference of Faster-RCNN/Mask-RCNN needed in Detectron, mostly direct fallbacks.
2. Use CPU device to hold 0-dim tensors and integer tensors in both fallback op and blob feeder, needed by Detectron models.
3. Ignore 0-dim tensor in MKL-DNN concat operator.
4. Generate dynamic library of Detectron module for CPU device.

This PR obsoletes #9164.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/10157

Differential Revision: D9276837

Pulled By: yinghai

fbshipit-source-id: dc364932ae4a2e7fcefdee70b5fce3c0cee91b6f
2018-08-29 15:11:01 -07:00

100 lines
3.5 KiB
Python

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals
import unittest
import hypothesis.strategies as st
from hypothesis import given
import numpy as np
from caffe2.python import core, workspace
from caffe2.proto import caffe2_pb2
import caffe2.python.hypothesis_test_util as hu
import caffe2.python.ideep_test_util as mu
@unittest.skipIf(not workspace.C.use_ideep, "No IDEEP support.")
class TestFallbackOps(hu.HypothesisTestCase):
@given(stride=st.integers(1, 3),
pad=st.integers(0, 3),
kernel=st.integers(3, 5),
size=st.integers(8, 10),
input_channels=st.integers(1, 3),
output_channels=st.integers(1, 5),
batch_size=st.integers(1, 3),
use_bias=st.booleans(),
**mu.gcs)
def test_in_place(self, stride, pad, kernel, size,
input_channels, output_channels,
batch_size, use_bias, gc, dc):
# To expose fallback in-place potential issue, the fallback op
# following ideep op must be run at least two iterations.
conv = core.CreateOperator(
"Conv",
["X", "w", "b"] if use_bias else ["X", "w"],
["Y"],
stride=stride,
pad=pad,
kernel=kernel,
device_option=dc[0]
)
X = np.random.rand(
batch_size, input_channels, size, size).astype(np.float32) - 0.5
w = np.random.rand(output_channels, input_channels, kernel, kernel) \
.astype(np.float32) - 0.5
b = np.random.rand(output_channels).astype(np.float32) - 0.5
old_ws_name = workspace.CurrentWorkspace()
workspace.SwitchWorkspace("_device_check_", True)
workspace.FeedBlob('X', X, dc[0])
workspace.FeedBlob('w', w, dc[0])
workspace.FeedBlob('b', b, dc[0])
workspace.RunOperatorOnce(conv)
Y = workspace.FetchBlob('Y')
scale = np.random.randn(Y.shape[1]).astype(np.float32)
bias = np.random.randn(Y.shape[1]).astype(np.float32)
ac = core.CreateOperator(
"AffineChannel",
["Y", "scale", "bias"],
["Y"],
is_learnable=False,
device_option=dc[0]
)
workspace.FeedBlob('scale', scale, dc[0])
workspace.FeedBlob('bias', bias, dc[0])
workspace.RunOperatorOnce(ac)
workspace.RunOperatorOnce(conv)
workspace.RunOperatorOnce(ac)
Y0 = workspace.FetchBlob('Y')
workspace.ResetWorkspace()
dev_net = caffe2_pb2.NetDef()
conv_dev = caffe2_pb2.OperatorDef()
conv_dev.CopyFrom(conv)
conv_dev.device_option.CopyFrom(dc[1])
ac_dev = caffe2_pb2.OperatorDef()
ac_dev.CopyFrom(ac)
ac_dev.device_option.CopyFrom(dc[1])
dev_net.op.extend([conv_dev, ac_dev])
workspace.FeedBlob('X', X, dc[1])
workspace.FeedBlob('w', w, dc[1])
workspace.FeedBlob('b', b, dc[1])
workspace.FeedBlob('scale', scale, dc[1])
workspace.FeedBlob('bias', bias, dc[1])
workspace.RunNetOnce(dev_net)
workspace.RunNetOnce(dev_net)
Y1 = workspace.FetchBlob('Y')
if not np.allclose(Y0, Y1, atol=0.01, rtol=0.01):
print(Y1.flatten())
print(Y0.flatten())
print(np.max(np.abs(Y1 - Y0)))
self.assertTrue(False)
workspace.SwitchWorkspace(old_ws_name)
if __name__ == "__main__":
unittest.main()