mirror of
https://github.com/pytorch/pytorch.git
synced 2025-10-21 05:34:18 +08:00
Summary: 1. Support ops needed for inference of Faster-RCNN/Mask-RCNN needed in Detectron, mostly direct fallbacks. 2. Use CPU device to hold 0-dim tensors and integer tensors in both fallback op and blob feeder, needed by Detectron models. 3. Ignore 0-dim tensor in MKL-DNN concat operator. 4. Generate dynamic library of Detectron module for CPU device. This PR obsoletes #9164. Pull Request resolved: https://github.com/pytorch/pytorch/pull/10157 Differential Revision: D9276837 Pulled By: yinghai fbshipit-source-id: dc364932ae4a2e7fcefdee70b5fce3c0cee91b6f
100 lines
3.5 KiB
Python
100 lines
3.5 KiB
Python
from __future__ import absolute_import
|
|
from __future__ import division
|
|
from __future__ import print_function
|
|
from __future__ import unicode_literals
|
|
|
|
import unittest
|
|
import hypothesis.strategies as st
|
|
from hypothesis import given
|
|
import numpy as np
|
|
from caffe2.python import core, workspace
|
|
from caffe2.proto import caffe2_pb2
|
|
import caffe2.python.hypothesis_test_util as hu
|
|
import caffe2.python.ideep_test_util as mu
|
|
|
|
|
|
@unittest.skipIf(not workspace.C.use_ideep, "No IDEEP support.")
|
|
class TestFallbackOps(hu.HypothesisTestCase):
|
|
@given(stride=st.integers(1, 3),
|
|
pad=st.integers(0, 3),
|
|
kernel=st.integers(3, 5),
|
|
size=st.integers(8, 10),
|
|
input_channels=st.integers(1, 3),
|
|
output_channels=st.integers(1, 5),
|
|
batch_size=st.integers(1, 3),
|
|
use_bias=st.booleans(),
|
|
**mu.gcs)
|
|
def test_in_place(self, stride, pad, kernel, size,
|
|
input_channels, output_channels,
|
|
batch_size, use_bias, gc, dc):
|
|
# To expose fallback in-place potential issue, the fallback op
|
|
# following ideep op must be run at least two iterations.
|
|
conv = core.CreateOperator(
|
|
"Conv",
|
|
["X", "w", "b"] if use_bias else ["X", "w"],
|
|
["Y"],
|
|
stride=stride,
|
|
pad=pad,
|
|
kernel=kernel,
|
|
device_option=dc[0]
|
|
)
|
|
X = np.random.rand(
|
|
batch_size, input_channels, size, size).astype(np.float32) - 0.5
|
|
w = np.random.rand(output_channels, input_channels, kernel, kernel) \
|
|
.astype(np.float32) - 0.5
|
|
b = np.random.rand(output_channels).astype(np.float32) - 0.5
|
|
|
|
old_ws_name = workspace.CurrentWorkspace()
|
|
workspace.SwitchWorkspace("_device_check_", True)
|
|
workspace.FeedBlob('X', X, dc[0])
|
|
workspace.FeedBlob('w', w, dc[0])
|
|
workspace.FeedBlob('b', b, dc[0])
|
|
workspace.RunOperatorOnce(conv)
|
|
Y = workspace.FetchBlob('Y')
|
|
|
|
scale = np.random.randn(Y.shape[1]).astype(np.float32)
|
|
bias = np.random.randn(Y.shape[1]).astype(np.float32)
|
|
ac = core.CreateOperator(
|
|
"AffineChannel",
|
|
["Y", "scale", "bias"],
|
|
["Y"],
|
|
is_learnable=False,
|
|
device_option=dc[0]
|
|
)
|
|
workspace.FeedBlob('scale', scale, dc[0])
|
|
workspace.FeedBlob('bias', bias, dc[0])
|
|
workspace.RunOperatorOnce(ac)
|
|
workspace.RunOperatorOnce(conv)
|
|
workspace.RunOperatorOnce(ac)
|
|
Y0 = workspace.FetchBlob('Y')
|
|
|
|
workspace.ResetWorkspace()
|
|
dev_net = caffe2_pb2.NetDef()
|
|
conv_dev = caffe2_pb2.OperatorDef()
|
|
conv_dev.CopyFrom(conv)
|
|
conv_dev.device_option.CopyFrom(dc[1])
|
|
ac_dev = caffe2_pb2.OperatorDef()
|
|
ac_dev.CopyFrom(ac)
|
|
ac_dev.device_option.CopyFrom(dc[1])
|
|
dev_net.op.extend([conv_dev, ac_dev])
|
|
workspace.FeedBlob('X', X, dc[1])
|
|
workspace.FeedBlob('w', w, dc[1])
|
|
workspace.FeedBlob('b', b, dc[1])
|
|
workspace.FeedBlob('scale', scale, dc[1])
|
|
workspace.FeedBlob('bias', bias, dc[1])
|
|
workspace.RunNetOnce(dev_net)
|
|
workspace.RunNetOnce(dev_net)
|
|
Y1 = workspace.FetchBlob('Y')
|
|
|
|
if not np.allclose(Y0, Y1, atol=0.01, rtol=0.01):
|
|
print(Y1.flatten())
|
|
print(Y0.flatten())
|
|
print(np.max(np.abs(Y1 - Y0)))
|
|
self.assertTrue(False)
|
|
|
|
workspace.SwitchWorkspace(old_ws_name)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
unittest.main()
|