Files
pytorch/torch/_higher_order_ops/cond.py
Daniel Galvez c7515da7b0 Implement cuda graphs implementation of torch.cond and torch.while_loop (#140979)
This is a new PR for #130386 , which got stale and was closed. Since I force-pushed to that branch in order to rebase it on top of main, the PR can no longer be reopened, according to https://github.com/isaacs/github/issues/361

I fixed the possibly-not-warmed-up problem described here: https://github.com/pytorch/pytorch/pull/130386/files#r1690856534

Since starting this, torch.cond and torch.while_loop now apparently have support for backward passes. I will look into what it might take to support that.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/140979
Approved by: https://github.com/eqy, https://github.com/eellison
2025-02-11 18:16:15 +00:00

596 lines
23 KiB
Python

# mypy: allow-untyped-decorators
# mypy: allow-untyped-defs
import contextlib
import logging
import warnings
from typing import Any, Callable, Union
import torch
import torch._subclasses.functional_tensor
import torch.utils._pytree as pytree
from torch._C import DispatchKey
from torch._C._functorch import (
_add_batch_dim,
get_unwrapped,
is_batchedtensor,
maybe_get_bdim,
)
from torch._dispatch.python import suspend_functionalization
from torch._functorch.utils import exposed_in
from torch._guards import detect_fake_mode
from torch._higher_order_ops.cudagraph_conditional_nodes import (
ControlFlowOpWarmupDispatchMode,
CUDAGraphCaptureControlFlowOpDispatchMode,
if_else_node,
)
from torch._higher_order_ops.utils import (
_has_potential_branch_input_alias,
_has_potential_branch_input_mutation,
_maybe_run_with_interpreter,
_set_compilation_env,
reenter_make_fx,
save_tensors_and_symints_for_backward,
saved_tensors_and_symints,
unique_graph_id,
UnsupportedAliasMutationException,
validate_subgraph_args_types,
)
from torch._ops import HigherOrderOperator
from torch._subclasses.fake_tensor import FakeTensorMode
from torch._subclasses.functional_tensor import disable_functional_mode
from torch.cuda.graphs import _graph_no_gc
from torch.fx.experimental.proxy_tensor import (
_temp_remove_metadata_torch_function_mode,
_temp_remove_pre_dispatch_torch_function_mode,
disable_proxy_modes_tracing,
ProxyTorchDispatchMode,
track_tensor_tree,
)
from torch.fx.passes.shape_prop import _extract_tensor_metadata
from torch.utils._python_dispatch import _get_current_dispatch_mode
from .utils import _from_fun, create_fw_bw_graph
log = logging.getLogger(__name__)
"""
We're going to define a `cond_op` operation.
In order to do this, we need implementations for each of the dispatch keys.
"""
class CondOp(HigherOrderOperator):
def __init__(self):
super().__init__("cond")
def __call__(self, pred, true_fn, false_fn, operands):
validate_subgraph_args_types(operands)
return super().__call__(pred, true_fn, false_fn, operands)
cond_op = CondOp()
@exposed_in("torch")
def cond(
pred: Union[bool, int, float, torch.Tensor],
true_fn: Callable,
false_fn: Callable,
operands: Union[tuple, list] = (),
) -> Any:
r"""
Conditionally applies `true_fn` or `false_fn`.
.. warning::
`torch.cond` is a prototype feature in PyTorch. It has limited support for input and output types and
doesn't support training currently. Please look forward to a more stable implementation in a future version of PyTorch.
Read more about feature classification at: https://pytorch.org/blog/pytorch-feature-classification-changes/#prototype
`cond` is structured control flow operator. That is, it is like a Python if-statement,
but has restrictions on `true_fn`, `false_fn`, and `operands` that enable it to be
capturable using torch.compile and torch.export.
Assuming the constraints on `cond`'s arguments are met, `cond` is equivalent to the following::
def cond(pred, true_branch, false_branch, operands):
if pred:
return true_branch(*operands)
else:
return false_branch(*operands)
Args:
pred (Union[bool, torch.Tensor]): A boolean expression or a tensor with one element,
indicating which branch function to apply.
true_fn (Callable): A callable function (a -> b) that is within the
scope that is being traced.
false_fn (Callable): A callable function (a -> b) that is within the
scope that is being traced. The true branch and false branch must
have consistent input and outputs, meaning the inputs have to be
the same, and the outputs have to be the same type and shape.
operands (Tuple of possibly nested dict/list/tuple of torch.Tensor): A tuple of inputs to the
true/false functions. It can be empty if true_fn/false_fn doesn't require input. Defaults to ().
Example::
def true_fn(x: torch.Tensor):
return x.cos()
def false_fn(x: torch.Tensor):
return x.sin()
return cond(x.shape[0] > 4, true_fn, false_fn, (x,))
Restrictions:
- The conditional statement (aka `pred`) must meet one of the following constraints:
- It's a `torch.Tensor` with only one element, and torch.bool dtype
- It's a boolean expression, e.g. `x.shape[0] > 10` or `x.dim() > 1 and x.shape[1] > 10`
- The branch function (aka `true_fn`/`false_fn`) must meet all of the following constraints:
- The function signature must match with operands.
- The function must return a tensor with the same metadata, e.g. shape,
dtype, etc.
- The function cannot have in-place mutations on inputs or global variables.
(Note: in-place tensor operations such as `add_` for intermediate results
are allowed in a branch)
"""
if torch.compiler.is_dynamo_compiling():
return cond_op(pred, true_fn, false_fn, operands)
from torch._dynamo.backends.debugging import (
make_eager_backend_with_torch_function_mode,
)
if isinstance(pred, (bool, int, float)):
# This is the non-strict export case. Strict export and torch.compile are
# handled above in dynamo.
if torch.compiler.is_compiling():
warnings.warn(
"Pred is a Python constant. When used with torch.cond, it specializes on one of the branches."
" If you want torch.cond to preserve two branches, please make the predicate a boolean tensor or a SymBool.",
UserWarning,
)
# This is the eager case. We can just run the true or false branch.
if pred:
return true_fn(*operands)
else:
return false_fn(*operands)
def _validate_input(pred, true_fn, false_fn, operands):
if not isinstance(pred, (bool, torch.Tensor, torch.SymBool)):
raise RuntimeError(f"Expected pred to be bool or tensor, but got {pred}.")
if isinstance(pred, torch.Tensor) and pred.numel() != 1:
raise RuntimeError(
f"Expected pred to be bool or single-element tensor, but got {pred}."
)
if not callable(true_fn) or not callable(false_fn):
raise RuntimeError("Expect both branches to be callable.")
if not isinstance(operands, (tuple, list)) or pytree.tree_any(
lambda t: not isinstance(t, torch.Tensor), operands
):
raise RuntimeError(
"Expect operands to be a tuple of possibly nested dict/list/tuple that only "
f"consists of tensor leaves, but got {operands}."
)
_validate_input(pred, true_fn, false_fn, operands)
if not torch._dynamo.is_dynamo_supported():
raise RuntimeError("torch.cond requires dynamo support.")
# Dynamo is expecting a callable with "__code__" attribute.
# We cannot directly pass cond_op to it. So we wrap it in a dummy function.
def _cond_op_wrapper(*args, **kwargs):
return cond_op(*args, **kwargs)
with _set_compilation_env(), torch._dynamo.utils.disable_cache_limit(), _temp_remove_pre_dispatch_torch_function_mode():
with _temp_remove_metadata_torch_function_mode() as metadata_mode:
if metadata_mode:
backend = make_eager_backend_with_torch_function_mode(metadata_mode)
else:
backend = "eager"
return torch.compile(_cond_op_wrapper, backend=backend, fullgraph=True)(
pred, true_fn, false_fn, operands
)
def create_fw_bw_graph_branches(true_fn, false_fn, *operands):
# See Note [HOP create fw_bw graph] in create_fw_bw_graph in utils.py
with suspend_functionalization(), disable_functional_mode():
with disable_proxy_modes_tracing():
fw_inputs = pytree.tree_map(_from_fun, operands)
fw_outputs_true = pytree.tree_map(_from_fun, true_fn(*fw_inputs))
if any(
not isinstance(out, torch.Tensor)
for out in fw_outputs_true
if out is not None
):
raise RuntimeError(
"Expect outputs of true_fn to only contains tensors or None. "
f"Got types {[type(out) for out in fw_outputs_true]}."
)
fw_outputs_false = pytree.tree_map(_from_fun, false_fn(*fw_inputs))
if any(
not isinstance(out, torch.Tensor)
for out in fw_outputs_false
if out is not None
):
raise RuntimeError(
"Expect outputs of false_fn to only contains tensors or None. "
f"Got types {[type(out) for out in fw_outputs_false]}."
)
# TODO: There is a major issue that the create_fw_bw in the higher_order_op is invoked twice:
# Once in the forward path (as it should) and once in the backward path, where it shouldn't be called
# If we can get rid of the second invokation, it would simplify this function
fw_true_graph, joint_true_graph = create_fw_bw_graph(
true_fn, False, fw_inputs, fw_outputs_true
)
fw_false_graph, joint_false_graph = create_fw_bw_graph(
false_fn, False, fw_inputs, fw_outputs_false
)
return fw_true_graph, fw_false_graph, joint_true_graph, joint_false_graph
def trace_cond(proxy_mode, func_overload, pred, true_fn, false_fn, operands):
assert isinstance(
operands, (list, tuple)
), f"Cond operands must be a list or tuple of tensors and SymInts {operands}"
true_graph = reenter_make_fx(true_fn)(*operands)
false_graph = reenter_make_fx(false_fn)(*operands)
true_outs = []
false_outs = []
for node in true_graph.graph.nodes:
if node.op == "output":
true_outs.extend(node.args)
for node in false_graph.graph.nodes:
if node.op == "output":
false_outs.extend(node.args)
flat_true_outs = pytree.arg_tree_leaves(*true_outs)
flat_false_outs = pytree.arg_tree_leaves(*false_outs)
if len(flat_true_outs) != len(flat_false_outs):
raise torch._dynamo.exc.CondOpArgsMismatchError(
f"Expected to return same number of outputs but got:"
f"\n true branch returns {len(flat_true_outs)} item(s)"
f"\n false branch returns {len(flat_false_outs)} item(s)"
)
for i in range(0, len(flat_true_outs)):
true_out = flat_true_outs[i]
false_out = flat_false_outs[i]
# Note that we need skip the check for requires_grad because we're after
# after autograd key during tracing, so the rquires_grad attribute of the tensors
# are no longer. See Note [invariants for node meta 'val']
def _same_meta_except_requires_grad(true_out, false_out):
if true_out is None and false_out is None:
return True
elif true_out is None or false_out is None:
# Consider the following case:
# def true_fn(x, y):
# return x * y
#
# def false_fn(x, y):
# return x.sin()
#
# We'll get the following graphs for backward:
# def backward_true_fn(x, y, grad_out):
# return grad_out * y, grad_out * x
#
# def backward_false_fn(x, y, grad_out):
# retrun grad_out, None
#
# This suggests that when we make_fx into the backward graph,
# the output graph would produce outputs with metadata, this is undesirable.
#
# Ideally, we should provide an optional type to indicate that one of the branches might
# return None. But we'll just let it pass for now and let downstream/runtime handle.
#
# Note that this corner case should **only** happen when user want to trace backward graph because
# if it's foward, dynamo will error.
return True
true_meta = true_out.meta.get("tensor_meta", None)
false_meta = false_out.meta.get("tensor_meta", None)
return (
true_meta.shape == false_meta.shape
and true_meta.dtype == false_meta.dtype
and true_meta.stride == false_meta.stride
)
if not _same_meta_except_requires_grad(true_out, false_out):
raise torch._dynamo.exc.CondOpArgsMismatchError(
f"Expected each tensor to have same metadata but got:"
f"\n {true_fn.__name__} returns {true_out.meta['tensor_meta']}"
f"\n {false_fn.__name__} returns {false_out.meta['tensor_meta']}"
)
i, true_name = unique_graph_id(proxy_mode, prefix="true_graph")
false_name = f"false_graph_{i}"
assert not hasattr(proxy_mode.tracer.root, false_name)
proxy_mode.tracer.root.register_module(true_name, true_graph)
proxy_mode.tracer.root.register_module(false_name, false_graph)
args = (pred, true_graph, false_graph, operands)
proxy_args = pytree.tree_map(proxy_mode.tracer.unwrap_proxy, args)
out_proxy = proxy_mode.tracer.create_proxy(
"call_function", func_overload, proxy_args, {}
)
# At this point, we're *guaranteed* that whether an output came from the
# true or false branch is indistinguishable. So, as this is just for tracing
# purposes, choose the true branch.
# TODO: the unbacked symbol allocations MUST NOT leak out, if you want to
# support this we need to arrange for the reenter_make_fx unbacked SymInts
# to be used, AND we need to arrange for some sort of unification between
# the two branches (but not really unification; e.g., if one branch
# returns [u0] and the other returns [5] this is OK but you MUST NOT
# conclude the result is 5. Also if one branch returns [3] and another
# branch returns [5] you can make it work by immediately allocating a new
# unbacked SymInt here).
ignore_fresh_unbacked = contextlib.nullcontext()
if (fake_mode := detect_fake_mode()) and fake_mode.shape_env:
ignore_fresh_unbacked = fake_mode.shape_env.ignore_fresh_unbacked_symbols()
# TODO: Uhh.... it shouldn't matter, but changing this to true_fn results in
# a FakeTensorMode error :
# `Current active mode <class 'torch._subclasses.fake_tensor.FakeTensorMode'> not registered`
# TODO Sometimes the operands are not completely FakeTensor, something seems went wrong in
# dynamo? Because of that it runs real computation sometimes and re-triggering downstream dispatch keys.
with ignore_fresh_unbacked:
out = false_fn(*operands)
return track_tensor_tree(out, out_proxy, constant=None, tracer=proxy_mode.tracer)
@cond_op.py_impl(DispatchKey.CompositeExplicitAutograd)
def cond_op_dense(pred, true_fn, false_fn, operands):
assert all(
isinstance(o, (torch.Tensor, int)) for o in operands
), f"Dense implementation operands must be a list of tensors and ints {operands}"
mode = _get_current_dispatch_mode()
assert mode is None, "Mode should never be enabled for CPU/CUDA key"
if pred:
return true_fn(*operands)
else:
return false_fn(*operands)
# WAR for https://github.com/pytorch/pytorch/issues/140322
@cond_op.py_impl(CUDAGraphCaptureControlFlowOpDispatchMode)
def cond_op_cudagraph(mode, pred, true_fn, false_fn, operands):
assert torch.cuda.is_available() and torch.cuda.is_current_stream_capturing()
# Re-enter this mode because addition torch.cond() and
# torch.while_loop() calls may be nested inside true_fn or
# false_fn
with mode:
return if_else_node(pred, true_fn, false_fn, operands)
# WAR for https://github.com/pytorch/pytorch/issues/140322
@cond_op.py_impl(ControlFlowOpWarmupDispatchMode)
def cond_op_warmup(mode, pred, true_fn, false_fn, operands):
if torch.cuda.is_current_stream_capturing():
# This is a call to torch.cond() nested within either
# torch.while_loop() or another torch.cond() function.
with mode:
return if_else_node(pred, true_fn, false_fn, operands)
else:
with _graph_no_gc(
torch.cuda.CUDAGraph(),
pool=None,
stream=mode.capture_stream,
capture_error_mode="relaxed",
), mode:
if_else_node(pred, true_fn, false_fn, operands)
# Since ControlFlowOpWarmupDispatchMode has been popped, this call
# will fall back to cond_op_dense
return cond_op_dense(pred, true_fn, false_fn, operands)
# return torch.cond(pred, true_fn, false_fn, operands)
class CondAutogradOp(torch.autograd.Function):
@staticmethod
def forward(
ctx,
pred,
fw_true_graph,
fw_false_graph,
joint_true_graph,
joint_false_graph,
*operands,
):
ctx._pred = pred
ctx._joint_true_graph = joint_true_graph
ctx._joint_false_graph = joint_false_graph
save_tensors_and_symints_for_backward(ctx, operands)
with torch._C._AutoDispatchBelowAutograd():
return cond_op(pred, fw_true_graph, fw_false_graph, operands)
@staticmethod
def backward(ctx, *flat_grads):
operands = saved_tensors_and_symints(ctx)
grads = cond_op(
ctx._pred,
ctx._joint_true_graph,
ctx._joint_false_graph,
flat_grads + operands,
)
return None, None, None, None, None, *grads
@cond_op.py_impl(DispatchKey.Autograd)
def cond_autograd(pred, true_fn, false_fn, operands):
# A shortcut for the case where all inputs don't require gradient,
# we skip tracing the forward and backward graph.
if pytree.tree_all_only(
torch.Tensor,
lambda t: not t.requires_grad, # type: ignore[union-attr]
(pred, operands),
):
with torch._C._AutoDispatchBelowAutograd():
return cond_op(pred, true_fn, false_fn, operands)
(
fw_true_graph,
fw_false_graph,
joint_true_graph,
joint_false_graph,
) = create_fw_bw_graph_branches(true_fn, false_fn, *operands)
flat_out = CondAutogradOp.apply(
pred,
fw_true_graph,
fw_false_graph,
joint_true_graph,
joint_false_graph,
*operands,
)
return flat_out
@cond_op.py_impl(ProxyTorchDispatchMode)
def inner(mode, pred, true_fn, false_fn, operands):
return trace_cond(mode, cond_op, pred, true_fn, false_fn, operands)
@cond_op.py_impl(FakeTensorMode)
def cond_fake_tensor_mode(mode, pred, true_fn, false_fn, operands):
# Ignore here, because if you've gotten here but you're not manually
# tracing the inner graphs, that means that you intend to reuse the graph
# directly. Which means the old unbacked symbol bindings are appropriate.
# This strategy will not work if unbacked symbols can escape.
ignore_fresh_unbacked = contextlib.nullcontext()
if mode.shape_env:
ignore_fresh_unbacked = mode.shape_env.ignore_fresh_unbacked_symbols()
with mode, ignore_fresh_unbacked:
true_outs = true_fn(*operands)
flat_true_outs = pytree.tree_leaves(true_outs)
flat_false_outs = pytree.tree_leaves(false_fn(*operands))
if len(flat_true_outs) != len(flat_false_outs):
raise RuntimeError("Unmatched number of outputs from cond() branches.")
for true_out, false_out in zip(flat_true_outs, flat_false_outs):
if true_out is None or false_out is None:
if true_out is None and false_out is None:
continue
raise torch._dynamo.exc.CondOpArgsMismatchError(
f"Expected both branches to return None:"
f"\n {true_fn.__name__} returns {true_out}"
f"\n {false_fn.__name__} returns {false_out}"
)
true_meta = _extract_tensor_metadata(true_out)
false_meta = _extract_tensor_metadata(false_out)
if true_meta != false_meta:
raise torch._dynamo.exc.CondOpArgsMismatchError(
f"Expected each tensor to have same metadata but got:"
f"\n {true_fn.__name__} returns {true_meta}"
f"\n {false_fn.__name__} returns {false_meta}"
)
return true_outs
@cond_op.py_functionalize_impl
def cond_func(ctx, pred, true_fn, false_fn, inputs):
unwrapped_inputs = ctx.unwrap_tensors(inputs)
unwrapped_pred = ctx.unwrap_tensors(pred)
with ctx.redispatch_to_next():
functional_true = ctx.functionalize(_maybe_run_with_interpreter(true_fn))
functional_false = ctx.functionalize(_maybe_run_with_interpreter(false_fn))
pre_dispatch = hasattr(ctx, "mode") and ctx.mode.pre_dispatch
for branch in [true_fn, false_fn]:
if _has_potential_branch_input_mutation(
branch, unwrapped_inputs, pre_dispatch=pre_dispatch
):
raise UnsupportedAliasMutationException(
"One of torch.cond branch might be modifying the input! "
"Consider cloning the input before modifying it. "
)
for branch in [true_fn, false_fn]:
if _has_potential_branch_input_alias(
branch, unwrapped_inputs, pre_dispatch=pre_dispatch
):
raise UnsupportedAliasMutationException(
"One of torch.cond branch might be aliasing the input! "
"If you are returning a view of the input, please make sure "
"to clone it. "
)
cond_return = cond_op(
unwrapped_pred, functional_true, functional_false, unwrapped_inputs
)
return ctx.wrap_tensors(cond_return)
@cond_op.py_impl(torch._C._functorch.TransformType.Vmap)
def cond_batch_rule(interpreter, pred, true_fn, false_fn, inputs):
assert isinstance(
inputs, (list, tuple)
), "Cond inputs must be a list or tuple of tensors"
assert all(
isinstance(i, torch.Tensor) for i in inputs
), "Cond inputs must be a list of tensors"
pred_is_batched = isinstance(pred, torch.Tensor) and is_batchedtensor(pred)
pred_ = get_unwrapped(pred) if pred_is_batched else pred
# unbatched tensors are not vmapped
tensors, in_dims = zip(
*[
(get_unwrapped(t), maybe_get_bdim(t)) if is_batchedtensor(t) else (t, None)
for t in inputs
]
)
if pred_is_batched:
# prepend "pred" and vmap everything
tensors = (pred_,) + tensors
in_dims = (0,) + in_dims
def fn(p, *args):
t = true_fn(*args)
f = false_fn(*args)
return torch.where(p, t[0], f[0])
with interpreter.lower():
result = torch.vmap(fn, in_dims=in_dims)(*tensors)
else:
# predicate is known at this stage and it is a boolean expression or a
# tensor with one element.
true_fn = torch.vmap(true_fn, in_dims=in_dims)
false_fn = torch.vmap(false_fn, in_dims=in_dims)
with interpreter.lower():
result = cond_op(pred, true_fn, false_fn, tensors)
if not isinstance(result, tuple):
result = (result,)
lvl = interpreter.level()
return tuple([_add_batch_dim(r, 0, lvl) for r in result])