Files
pytorch/test/inductor/test_padding.py
Xinya Zhang e769026bcb [ROCm] Remove HIPBLASLT_ALLOW_TF32 from codebase (#162998)
A few UT failures are caused by `HIPBLASLT_ALLOW_TF32`

Fixes #157094
Fixes #157093
Fixes #157092
Fixes #157091
Fixes #157064
Fixes #157063
Fixes #157062
Fixes #157061
Fixes #157042
Fixes #157041
Fixes #157039
Fixes #157004

Pull Request resolved: https://github.com/pytorch/pytorch/pull/162998
Approved by: https://github.com/jeffdaily

Co-authored-by: Jeff Daily <jeff.daily@amd.com>
2025-09-18 13:53:48 +00:00

915 lines
32 KiB
Python

# Owner(s): ["module: inductor"]
import copy
import functools
import os
import unittest
import torch
from torch import nn, Tensor
from torch._dynamo.convert_frame import maybe_cprofile
from torch._dynamo.device_interface import get_interface_for_device
from torch._dynamo.testing import rand_strided, reduce_to_scalar_loss
from torch._inductor import config, ir, metrics
from torch._inductor.fx_passes import pad_mm as pad_mm_pass
from torch._inductor.runtime.benchmarking import benchmarker
from torch._inductor.test_case import run_tests, TestCase
from torch._inductor.utils import ceildiv, run_and_get_code
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
serialTest,
)
from torch.testing._internal.inductor_utils import GPU_TYPE, HAS_GPU, requires_gpu
DO_PERF_TEST = os.environ.get("DO_PERF_TEST") == "1"
DO_ACC_TEST = os.environ.get("DO_ACC_TEST", "1") == "1"
WITH_STACK = os.environ.get("WITH_STACK") == "1"
USE_CUDA_GRAPHS = os.environ.get("USE_CUDA_GRAPHS", "1") == "1"
try:
import transformers # noqa: F401
HAS_TRANSFORMER = True
except ImportError:
HAS_TRANSFORMER = False
def get_optim(m):
return torch.optim.Adam(m.parameters(), lr=0.01, capturable=True, foreach=True)
def gen_transformer_inputs(vocab_size, bs, seq_length):
def geninp():
return torch.randint(
0, vocab_size, (bs, seq_length), dtype=torch.int64, requires_grad=False
)
input_dict = {"input_ids": geninp(), "labels": geninp()}
return input_dict
def get_padded_stride(shape, alignment_bytes, pad_output, itemsize):
align = alignment_bytes // itemsize
new_strides = [0 for _ in range(len(shape))]
new_strides[len(shape) - 1] = 1
for i in range(len(shape) - 1, 0, -1):
stride = shape[i] * new_strides[i]
if pad_output and stride % align != 0:
stride = (stride + align - 1) // align * align
new_strides[i - 1] = stride
return tuple(new_strides)
class LinearAndSoftmax(nn.Module):
"""
It's very common that a transformer model will do a matmul and then
softmax/log_softmax in the end.
Creating this toy model to capture the pattern and make sure we do
proper padding.
"""
def __init__(self, vocab_size=30523, bias=True):
"""
The default vocab size for BertForMaskedLM is 30522.
We run a few test cases with good or bad vocab_size around Bert's
default value.
"""
super().__init__()
self.vocab_size = vocab_size
self.linear = nn.Linear(768, vocab_size, bias=bias)
self.ce = nn.CrossEntropyLoss()
def forward(self, x, label):
x = self.linear(x)
return self.ce(x.view(-1, self.vocab_size), label.view(-1))
def get_example_inputs(self, batch_size=16):
return torch.randn(batch_size, 512, 768), torch.randint(
0, self.vocab_size, (batch_size, 512)
)
def forward_and_backward_pass(m, inputs):
m(*inputs).sum().backward()
@config.patch(
{
"benchmark_kernel": True,
"triton.unique_kernel_names": True,
"triton.cudagraphs": USE_CUDA_GRAPHS,
}
)
@requires_gpu()
class TestCaseBase(TestCase):
@classmethod
def setUpClass(cls):
if HAS_GPU:
cls.prior_float32_matmul_precision = torch.get_float32_matmul_precision()
cls.prior_default_device = torch.get_default_device()
if torch.version.hip:
torch.set_float32_matmul_precision("highest")
else:
torch.set_float32_matmul_precision("high")
torch.set_default_device(GPU_TYPE)
@classmethod
def tearDownClass(cls):
if HAS_GPU:
torch.set_float32_matmul_precision(cls.prior_float32_matmul_precision)
torch.set_default_device(cls.prior_default_device)
cls.prior_float32_matmul_precision = None
cls.prior_default_device = None
def check_close(self, ref, act, tol=1e-3):
if type(ref).__name__ == "LongformerMaskedLMOutput":
ref = ref.loss
act = act.loss
if type(ref).__name__ == "SequenceClassifierOutput":
ref = ref.logits
act = act.logits
if isinstance(ref, dict) and "loss" in ref:
ref = ref["loss"]
act = act["loss"]
self.assertTrue(
torch.allclose(ref, act, atol=tol, rtol=tol), f"ref:\n{ref}\nact:\n{act}"
)
def common_numeric_check(self, f, *args, tol=1e-3, **kwargs):
ref = f(*args, **kwargs)
opt_f = torch.compile(f)
act = opt_f(*args, **kwargs)
self.check_close(ref, act, tol)
def do_profiling(
self,
f_lhs,
f_rhs,
tag_lhs="With padding",
tag_rhs="Without padding",
args=(),
kwargs=None,
):
if kwargs is None:
kwargs = {}
device_interface = get_interface_for_device(GPU_TYPE)
device_interface.synchronize()
with torch.profiler.profile(with_stack=WITH_STACK) as p:
niter = 3
for _ in range(niter):
with torch.profiler.record_function(tag_lhs):
f_lhs(*args, **kwargs)
with torch.profiler.record_function(tag_rhs):
f_rhs(*args, **kwargs)
device_interface.synchronize()
profile_path = "/tmp/chrome.json"
p.export_chrome_trace(profile_path)
print(f"Chrome trace is written to {profile_path}")
class PerfTestBetweenGoodAndBadShape(TestCaseBase):
@unittest.skipIf(not DO_PERF_TEST, "Perf test not enabled")
def test_nobias_LinearAndSoftmax_both_shapes(self):
self.test_LinearAndSoftmax_both_shapes(bias=False)
@unittest.skipIf(not DO_PERF_TEST, "Perf test not enabled")
def test_LinearAndSoftmax_both_shapes(self, bias=True):
"""
Compare the perf with good and bad shape.
"""
m_bad_shape = LinearAndSoftmax(vocab_size=30523, bias=bias)
inptus_bad_shape = m_bad_shape.get_example_inputs()
m_good_shape = LinearAndSoftmax(vocab_size=30528, bias=bias)
inputs_good_shape = m_good_shape.get_example_inputs()
m_bad_shape_opt = torch.compile(m_bad_shape)
m_good_shape_opt = torch.compile(m_good_shape)
latency_good_shape = benchmarker.benchmark_gpu(
lambda: forward_and_backward_pass(m_good_shape_opt, inputs_good_shape)
)
latency_bad_shape = benchmarker.benchmark_gpu(
lambda: forward_and_backward_pass(m_bad_shape_opt, inptus_bad_shape)
)
print(
f"Latency for good shape v.s. bad shape: {latency_good_shape:.3f}ms v.s. {latency_bad_shape:.3f}ms"
)
@unittest.skipIf(not DO_PERF_TEST or not HAS_TRANSFORMER, "Perf test not enabled")
def test_BertForMaskedLM(self, num_layers=1):
"""
Compare the perf between doing padding and good shape.
"""
from transformers import BertForMaskedLM
config_cls = BertForMaskedLM.config_class
bs = 16
seq_length = 512
def create_model(vocab_size):
config = config_cls()
config.num_hidden_layers = num_layers
config.vocab_size = vocab_size
inputs = gen_transformer_inputs(config.vocab_size, bs, seq_length)
model = BertForMaskedLM(config)
optim = get_optim(model)
def f(**inputs):
optim.zero_grad(True)
with torch.autocast(GPU_TYPE):
pred = model(**inputs)
loss = pred[0]
loss.backward()
optim.step()
return torch.compile(f), inputs
f_good_shape, inputs_good_shape = create_model(30528)
f_bad_shape, inputs_bad_shape = create_model(30522)
print("benchmark for good shape")
latency_good_shape = benchmarker.benchmark_gpu(
lambda: f_good_shape(**inputs_good_shape)
)
print("benchmark for bad shape")
latency_bad_shape = benchmarker.benchmark_gpu(
lambda: f_bad_shape(**inputs_bad_shape)
)
print(
f"Latency with good and bad shape: {latency_good_shape:.3f} v.s. {latency_bad_shape:.3f}"
)
self.do_profiling(
lambda: f_good_shape(**inputs_good_shape),
lambda: f_bad_shape(**inputs_bad_shape),
tag_lhs="With good shape",
tag_rhs="With bad shape",
)
class PerfTestWithAndWithoutPadding(TestCaseBase):
@maybe_cprofile
def run_acc_and_perf_test(self, model, inputs, perf_inputs=None, tol=1e-3):
"""
Run accuracy test.
Also compare the perf with and without the comprehensive padding if
DO_PERF_TEST is true.
"""
if perf_inputs is None:
perf_inputs = inputs
def _process_inputs(x):
"""
return args and kwargs
"""
if isinstance(x, dict):
return [], x
if not isinstance(inputs, (tuple, list)):
x = [x]
return x, {}
args, kwargs = _process_inputs(inputs)
perf_args, perf_kwargs = _process_inputs(perf_inputs)
if DO_ACC_TEST:
model.eval()
self.common_numeric_check(model, *args, **kwargs, tol=tol)
else:
print("Accuracy test skipped")
model.train()
if DO_PERF_TEST:
print("Do performance test")
def get_f(m, optim):
def f(*args, **kwargs):
optim.zero_grad(True)
with torch.autocast(GPU_TYPE):
pred = m(*args, **kwargs)
loss = reduce_to_scalar_loss(pred)
loss.backward()
optim.step()
return f
latency_with_padding = None
print("Benchmark with padding")
with config.patch(comprehensive_padding=True):
m_copy_with_padding = copy.deepcopy(model)
optim_with_padding = get_optim(m_copy_with_padding)
opt_f_with_padding = torch.compile(
get_f(m_copy_with_padding, optim_with_padding)
)
latency_with_padding = benchmarker.benchmark_gpu(
lambda: opt_f_with_padding(*perf_args, **perf_kwargs)
)
latency_without_padding = None
print("bencmark without padding")
with config.patch(comprehensive_padding=False):
m_copy_without_padding = copy.deepcopy(model)
optim_without_padding = get_optim(m_copy_without_padding)
opt_f_without_padding = torch.compile(
get_f(m_copy_without_padding, optim_without_padding)
)
latency_without_padding = benchmarker.benchmark_gpu(
lambda: opt_f_without_padding(*perf_args, **perf_kwargs)
)
print(
f"Latency with and without padding: {latency_with_padding:.3f} v.s. {latency_without_padding:.3f}"
)
# profiling
self.do_profiling(
opt_f_with_padding,
opt_f_without_padding,
args=perf_args,
kwargs=perf_kwargs,
)
def test_nvidia_deeprecommender(self):
"""
Compared the perf with and without comprehensive padding.
"""
layer_sizes = [197951, 512, 512, 1024, 512, 512, 197951]
x = torch.randn(4, layer_sizes[0])
class Model(nn.Module):
def __init__(self) -> None:
super().__init__()
mod_list = []
for i in range(len(layer_sizes) - 1):
mod_list.append(nn.Linear(layer_sizes[i], layer_sizes[i + 1]))
mod_list.append(nn.SELU())
if i == 2:
mod_list.append(nn.Dropout(0.8))
self.seq = nn.Sequential(*mod_list)
def forward(self, x):
return self.seq(x)
m = Model()
perf_inputs = torch.randn(256, layer_sizes[0])
self.run_acc_and_perf_test(m, x, perf_inputs)
@unittest.skipIf(not DO_PERF_TEST or not HAS_TRANSFORMER, "Perf test not enabled")
def test_longformer(self, bs=4):
from transformers import AutoConfig, AutoModelForMaskedLM
config = AutoConfig.from_pretrained("allenai/longformer-base-4096")
model = AutoModelForMaskedLM.from_config(config)
vocab_size = model.config.vocab_size
seq_length = 1024
input_dict = gen_transformer_inputs(vocab_size, bs, seq_length)
self.run_acc_and_perf_test(model, input_dict)
@unittest.skipIf(not DO_PERF_TEST or not HAS_TRANSFORMER, "Perf test not enabled")
def test_longformer_small_bs(self):
"""
The model exists in both HF and TB. In TB it uses a smaller batch size.
"""
self.test_longformer(bs=2)
@instantiate_parametrized_tests
class PaddingTest(TestCaseBase):
@unittest.skipIf(not DO_PERF_TEST, "Perf test not enabled")
def test_mm_padding_perf(self):
def naive_mm(a, b):
return a @ b
def _compute_padding(s, align):
return (s + align - 1) // align * align - s
@torch.compile
def pad_mm(a, b, align=16):
"""
NOTE: this function only pad a single dimension which is good
enough for testing.
"""
m_padding = _compute_padding(a.size(0), align)
k_padding = _compute_padding(a.size(1), align)
n_padding = _compute_padding(b.size(1), align)
return pad_mm_pass.pad_mm(a, b, m_padding, k_padding, n_padding)
for M, K, N, f in (
(8192, 768, 30523, naive_mm),
(8192, 768, 30523, pad_mm),
(8192, 768, 30528, naive_mm),
(30523, 8192, 768, naive_mm),
(30528, 8192, 768, naive_mm),
):
a = torch.randn(M, K)
b = torch.randn(K, N)
ms = benchmarker.benchmark_gpu(lambda: f(a, b))
print(f"MxKxN {M}x{K}x{N} {f.__name__}: {ms:.3f}ms")
@unittest.skipIf(not DO_PERF_TEST, "Perf test not enabled")
def test_padmm(self):
"""
Latency between original matmul and padded matmul: 2.717 v.s. 2.356
"""
mat1_pad = torch.randn(8192, 30522, dtype=torch.float16)
mat2_pad = torch.randn(30522, 768, dtype=torch.float16)
def f():
return mat1_pad @ mat2_pad
def pad_dim(x: Tensor, padded_length: int, dim: int) -> Tensor:
pad = x.new_zeros(*x.shape[:dim], padded_length, *x.shape[dim + 1 :])
return torch.cat([x, pad], dim=dim)
@torch.compile(fullgraph=True, options={"triton.cudagraphs": False})
def g():
mat1 = mat1_pad
mat2 = mat2_pad
mat1 = pad_dim(mat1, 6, 1)
mat2 = pad_dim(mat2, 6, 0)
return torch.ops.aten.mm(mat1, mat2)
ori_time = benchmarker.benchmark_gpu(f)
pad_time = benchmarker.benchmark_gpu(g)
print(
f"Latency between original matmul and padded matmul: {ori_time:.3f} v.s. {pad_time:.3f}"
)
self.do_profiling(f, g, "No MM Padding", "With mm padding")
@unittest.skipIf(not DO_PERF_TEST, "Perf test not enabled")
def test_matmul(self):
"""
Latency with good and bad shapes: 1.705 v.s. 2.625
"""
x_good_shape = torch.randn(8192, 30528, dtype=torch.float16)
weight_good_shape = torch.randn(30528, 768, dtype=torch.float16)
out_good_shape = torch.randn(8192, 768, dtype=torch.float16)
# Using stride (30522, 1) does not make a difference here.
x_bad_shape = rand_strided(
(8192, 30522), (30528, 1), device=GPU_TYPE, dtype=torch.float16
)
weight_bad_shape = torch.randn(30522, 768, dtype=torch.float16)
out_bad_shape = torch.randn(8192, 768, dtype=torch.float16)
def f(x, weight, out):
torch.mm(x, weight, out=out)
return out
f1 = torch.compile(
functools.partial(f, x_good_shape, weight_good_shape, out_good_shape)
)
f2 = torch.compile(
functools.partial(f, x_bad_shape, weight_bad_shape, out_bad_shape)
)
latency_good_shape = benchmarker.benchmark_gpu(f1)
latency_bad_shape = benchmarker.benchmark_gpu(f2)
print(
f"Latency with good and bad shapes: {latency_good_shape:.3f} v.s. {latency_bad_shape:.3f}"
)
self.do_profiling(f1, f2)
@serialTest()
def test_nobias_LinearAndSoftmax_codegen(self):
self.test_LinearAndSoftmax_codegen(bias=False)
def test_LinearAndSoftmax_codegen(self, bias=True):
m_bad_shape = LinearAndSoftmax(vocab_size=30523, bias=bias)
inputs_bad_shape = m_bad_shape.get_example_inputs()
m_bad_shape_opt = torch.compile(copy.deepcopy(m_bad_shape))
_, wrapper_codes = run_and_get_code(
forward_and_backward_pass, m_bad_shape_opt, inputs_bad_shape
)
forward_and_backward_pass(m_bad_shape, inputs_bad_shape)
self.assertEqual(
m_bad_shape.linear.weight.grad, m_bad_shape_opt.linear.weight.grad
)
self.assertTrue(len(wrapper_codes) == 2) # one for forward and one for backward
forward_wrapper = wrapper_codes[0]
# make sure the load for softmax is aligned
self.assertTrue(
"tl.load(in_ptr0 + (r0_1 + 30528*x0)" in forward_wrapper,
f"forward_wrapper: {forward_wrapper}",
)
if DO_PERF_TEST:
latency = benchmarker.benchmark_gpu(
lambda: forward_and_backward_pass(m_bad_shape_opt, inputs_bad_shape)
)
print(f"latency: {latency:.3f}ms")
@config.patch(pattern_matcher=False)
def test_attention(self):
batch_size, seq_len, num_heads, hidden_size = 1, 4, 1, 16
inv_scale = (num_heads / hidden_size) ** 0.5
class Attention(nn.Module):
def __init__(self) -> None:
super().__init__()
self.query = nn.Linear(hidden_size, hidden_size)
self.key = nn.Linear(hidden_size, hidden_size)
self.value = nn.Linear(hidden_size, hidden_size)
@staticmethod
def reshape(x):
return x.view(batch_size, seq_len, num_heads, -1).permute(0, 2, 1, 3)
@staticmethod
def cancel_reshape(x):
return x.permute(0, 2, 1, 3).view(batch_size, seq_len, hidden_size)
def forward(self, x):
query, key, value = self.query(x), self.key(x), self.value(x)
weights = (
torch.matmul(
self.reshape(query), self.reshape(key).permute(0, 1, 3, 2)
)
* inv_scale
).softmax(dim=-1)
return self.cancel_reshape(torch.matmul(weights, self.reshape(value)))
attn = Attention()
x = torch.randn(batch_size, seq_len, hidden_size)
self.common_numeric_check(attn, x)
def test_view(self):
def f(x):
return x.view(3, 3, 3)
x = torch.randn(3, 9)
self.common_numeric_check(f, x)
def test_pad_strides(self):
"""
Note that dim0's stride is also padded even though its previous value
is already multiple of 16. The reason is we padded dim1's stride.
We have to correspondingly increase the stride for dim0.
"""
sizes = [2, 16, 2047]
in_strides = [2047 * 16, 2047, 1]
out_strides = list(ir.Layout._pad_strides(in_strides, sizes, torch.float32))
expected_strides = [2048 * 16, 2048, 1]
self.assertEqual(
expected_strides, out_strides, f"{expected_strides} v.s. {out_strides}"
)
def test_pad_strides_skip(self):
"""
The padding is skipped to avoid too much memory overhead.
"""
sizes = [2, 32, 127]
in_strides = [4064, 127, 1]
out_strides = list(ir.Layout._pad_strides(in_strides, sizes, torch.float32))
expected_strides = [4064, 127, 1]
self.assertEqual(
expected_strides, out_strides, f"{expected_strides} v.s. {out_strides}"
)
def test_pad_3d_tensor(self):
"""
Constructing this test case guided by the fact that we don't pad
placeholder or user visible output's strides.
Add a matmul in the beginning and end so we can pad strides for
intermediate tensors.
"""
def f(x, y):
x = torch.matmul(x, y)
x = x + 1
return torch.matmul(x, y)
x = torch.randn(2, 16, 2047)
y = torch.randn(2047, 2047)
self.common_numeric_check(f, x, y, tol=1e-2)
self.assertTrue(metrics.num_comprehensive_padding > 0)
def test_conv(self):
"""
Padding the input for convolution may cause extra copy kernel being called.
Check this example trace: https://gist.github.com/shunting314/ce45398f7d51a63ce05fc8d411faddb3
"""
x_shape = (1, 128, 640, 959)
x1 = torch.randn(*x_shape)
padded_stride = ir.Layout._pad_strides(x1.stride(), x1.shape, torch.float32)
x2 = rand_strided(x_shape, padded_stride, device=GPU_TYPE)
x2.copy_(x1)
weight = torch.randn(64, 128, 3, 3)
def fun(x, weight):
return torch.convolution(
x,
weight,
stride=(1, 1),
padding=(1, 1),
dilation=(1, 1),
transposed=False,
output_padding=(0, 0),
groups=1,
bias=None,
)
ref = fun(x1, weight)
act = fun(x2, weight)
self.check_close(ref, act)
if DO_PERF_TEST:
latency_with_padding = benchmarker.benchmark_gpu(lambda: fun(x2, weight))
latency_without_padding = benchmarker.benchmark_gpu(lambda: fun(x1, weight))
print(
f"Latency with and without padding: {latency_with_padding:.3f} v.s. {latency_without_padding:.3f}"
)
self.do_profiling(lambda: fun(x2, weight), lambda: fun(x1, weight))
@unittest.skipIf(not DO_PERF_TEST, "Perf test not enabled")
def test_cat(self):
"""
Compare the perf between aten cat and compiled cat.
Latency between eager and compiled: 1.596 v.s. 0.601
Eager cat can be 2.66x slower than inductor kernel.
"""
x = torch.randn(8192, 30522, dtype=torch.float16)
def f(x):
pad = x.new_zeros(x.size(0), 6)
return torch.cat([x, pad], dim=1)
# disable cudagraphs since cudagraphs need copy the input which
# distort the latency a lot! (double the latency here for compiled
# version)
with config.patch("triton.cudagraphs", False):
opt_f = torch.compile(f)
opt_f(x)
eager_time = benchmarker.benchmark_gpu(lambda: f(x))
opt_time = benchmarker.benchmark_gpu(lambda: opt_f(x))
print(
f"Latency between eager and compiled: {eager_time:.3f} v.s. {opt_time:.3f}"
)
self.do_profiling(lambda: f(x), lambda: opt_f(x), "Eager Cat", "Compiled Cat")
def test_pad_channels_last(self):
t = torch.randn(2, 3, 5, 1025)
in_strides = t.stride()
out_strides = ir.Layout._pad_strides(in_strides, t.shape, torch.float32)
self.assertTrue(in_strides != out_strides)
t = t.to(memory_format=torch.channels_last)
in_strides = t.stride()
out_strides = ir.Layout._pad_strides(in_strides, t.shape, torch.float32)
self.assertTrue(in_strides == out_strides)
@parametrize("alignment_bytes", (32, 128))
@parametrize("shape", [(21, 19), (3, 5, 71)])
@parametrize("dtype", (torch.float16, torch.float32))
def test_pad_outputs(
self, dtype: torch.dtype, shape: tuple[int], alignment_bytes: int
):
"""
Tests padding output tensors to a specific alignment.
This is enabled by a config flag.
"""
func = torch.add
inputs = tuple(torch.randn(*shape, dtype=dtype) for input_idx in range(2))
# Compile and run
with config.patch(
{
"comprehensive_padding": True,
"padding_alignment_bytes": alignment_bytes,
"padding_stride_threshold": 0,
"pad_outputs": True,
}
):
compiled_func = torch.compile(func)
compiled_out = compiled_func(*inputs)
# Check numerics
eager_out = func(*inputs)
self.check_close(eager_out, compiled_out)
# Compute the expected padding
element_size = torch.tensor([], dtype=dtype).element_size()
self.assertGreater(alignment_bytes, element_size)
self.assertEqual(alignment_bytes % element_size, 0)
alignment_elements = alignment_bytes // element_size
contiguous_stride = inputs[0].stride()
expected_stride = [1]
for dim in reversed(shape[1:]):
slice_size = dim * expected_stride[0]
new_stride = alignment_elements * ceildiv(slice_size, alignment_elements)
expected_stride.insert(0, new_stride)
expected_stride = tuple(expected_stride)
self.assertNotEqual(expected_stride, contiguous_stride)
# Check strides
self.assertFalse(compiled_out.is_contiguous())
self.assertEqual(compiled_out.stride(), expected_stride)
@parametrize(
"shape,alignment_bytes,pad_output",
[
((512, 1), 32, False),
((512, 1), 32, True),
((32, 30), 64, False),
((32, 30), 64, True),
],
)
def test_noop_concat_output_padding(self, shape, alignment_bytes, pad_output):
"""
When we generate no-op concat kernel, alignment of the inputs
and outputs should be honored based on padding_alignment_bytes.
"""
def get_input(size: tuple[int], alignment_bytes: int) -> torch.Tensor:
size_padded = list(size)
elem_size = 4 # float32
pad_elems = alignment_bytes // elem_size
if pad_output:
size_padded[-1] = (
(size_padded[-1] + pad_elems - 1) // pad_elems * pad_elems
)
full = torch.randn(size_padded, dtype=torch.float32)
view = torch.as_strided(full, size, full.stride())
return view
num_inputs = 12
input_tensors = [get_input(shape, alignment_bytes) for _ in range(num_inputs)]
config_patches = {
"compile_threads": 1,
"comprehensive_padding": pad_output,
"cpu_backend": "triton",
"disable_padding_cpu": False,
"implicit_fallbacks": False,
"inplace_buffers": False,
"padding_alignment_bytes": alignment_bytes,
"pad_channels_last": True,
"pad_outputs": True,
"padding_stride_threshold": 0,
"triton.prefer_nd_tiling": True,
"triton.use_block_ptr": True,
"triton.codegen_upcast_to_fp32": False,
"unroll_reductions_threshold": 1,
}
with config.patch(config_patches):
compiled = torch.compile(torch.cat)
_, code = run_and_get_code(compiled, input_tensors, 0)
output_shape = (shape[0] * num_inputs, shape[1])
output_stride = input_tensors[0].stride()
output_line = f"buf12 = empty_strided_{GPU_TYPE}({output_shape}, {output_stride}, torch.float32)"
self.assertTrue(output_line in code[0])
@parametrize(
"shape,alignment_bytes,enable_pad",
[
((512, 1), 32, False),
((512, 1), 32, True),
((32, 30), 64, False),
((32, 30), 64, True),
((512, 100, 1), 32, False),
((512, 100, 1), 32, True),
((32, 50, 30), 64, False),
((32, 50, 30), 64, True),
],
)
def test_outer_dynamic_shape_padding(self, shape, alignment_bytes, enable_pad):
"""
When only the outermost dim is dynamic shape, the output can still be padded up
based on padding configuration.
"""
num_inputs = 2
input_tensors = [
torch.randn(shape, dtype=torch.float32) for _ in range(num_inputs)
]
config_patches = {
"comprehensive_padding": enable_pad,
"pad_dynamic_shapes": True,
"cpu_backend": "triton",
"padding_alignment_bytes": alignment_bytes,
"pad_outputs": True,
"padding_stride_threshold": 0,
}
with config.patch(config_patches):
torch._dynamo.mark_dynamic(input_tensors[0], 0)
torch._dynamo.mark_dynamic(input_tensors[1], 0)
compiled = torch.compile(torch.add)
result, _ = run_and_get_code(compiled, *input_tensors)
expected_stride = get_padded_stride(
result.shape, alignment_bytes, enable_pad, result.dtype.itemsize
)
self.assertEqual(result.stride(), expected_stride)
@parametrize(
"shape,perm,alignment_bytes,enable_pad",
[
((500, 10, 1), (2, 1, 0), 32, False),
((500, 20, 1), (2, 1, 0), 32, True),
((30, 10, 20), (2, 1, 0), 64, True),
((30, 10, 20), (2, 1, 0), 64, False),
((500, 10, 1), (1, 2, 0), 32, False),
((500, 20, 1), (1, 2, 0), 32, True),
((30, 10, 20), (1, 2, 0), 64, True),
((30, 10, 20), (1, 2, 0), 64, False),
],
)
def test_perm_outer_dynamic_shape_padding(
self, shape, perm, alignment_bytes, enable_pad
):
"""
When only the outermost dim is dynamic shape, the output can still be padded up
based on padding configuration. Test when this occurs after a permute op.
"""
def permute_contig(x):
return torch.permute(x, perm).contiguous()
num_inputs = 1
input_tensors = [
torch.randn(shape, dtype=torch.float32) for _ in range(num_inputs)
]
config_patches = {
"comprehensive_padding": enable_pad,
"pad_dynamic_shapes": True,
"cpu_backend": "triton",
"padding_alignment_bytes": alignment_bytes,
"pad_outputs": True,
"padding_stride_threshold": 0,
"triton.use_block_ptr": True,
}
with config.patch(config_patches):
torch._dynamo.mark_dynamic(input_tensors[0], 2)
compiled = torch.compile(permute_contig)
result, _ = run_and_get_code(compiled, *input_tensors)
expected_stride = get_padded_stride(
result.shape, alignment_bytes, enable_pad, result.dtype.itemsize
)
self.assertEqual(result.stride(), expected_stride)
@parametrize(
"shape,alignment_bytes,enable_pad",
[
((512, 1), 32, False),
((512, 1), 32, True),
((32, 30), 64, False),
((32, 30), 64, True),
((512, 100, 1), 32, False),
((512, 100, 1), 32, True),
((32, 50, 30), 64, False),
((32, 50, 30), 64, True),
],
)
def test_dynamic_shape_padding(self, shape, alignment_bytes, enable_pad):
"""
When only the outermost dim is dynamic shape, the output can still be padded up
based on padding configuration.
"""
num_inputs = 2
input_tensors = [
torch.randn(shape, dtype=torch.float32) for _ in range(num_inputs)
]
config_patches = {
"comprehensive_padding": enable_pad,
"pad_dynamic_shapes": enable_pad,
"cpu_backend": "triton",
"padding_alignment_bytes": alignment_bytes,
"pad_outputs": True,
"padding_stride_threshold": 0,
}
with config.patch(config_patches):
compiled = torch.compile(torch.add, dynamic=True)
result, _ = run_and_get_code(compiled, *input_tensors)
expected_stride = get_padded_stride(
result.shape, alignment_bytes, enable_pad, result.dtype.itemsize
)
self.assertEqual(result.stride(), expected_stride)
if __name__ == "__main__":
if HAS_GPU:
run_tests()