mirror of
https://github.com/pytorch/pytorch.git
synced 2025-10-20 21:14:14 +08:00
Fixes #136662 There are two problems: 1) canonicalize_view_scatter_ops adds some new nodes into the graph. These new nodes cause the alias info on the graph to be wrong. To fix this, we try to run FakeTensorUpdater on the graph again. 2) FakeTensorUpdater's alias information is wrong. It tries to skip nodes that it thinks have "equivalent" FakeTensor metadata. It should not be allowed to do this if any users of the node can alias the node. The example is if we have `x = foo(...); y = x.view(...)`. If the user replaces `foo` with a new `bar` node and sets bar.meta["val"] correctly, then FakeTensorUpdater still needs to update y's meta["val"] to be a view of the new bar node. Pull Request resolved: https://github.com/pytorch/pytorch/pull/152011 Approved by: https://github.com/yf225
486 lines
16 KiB
Python
486 lines
16 KiB
Python
# Owner(s): ["module: inductor"]
|
|
|
|
import torch
|
|
import torch._inductor.config as inductor_config
|
|
from functorch import make_fx
|
|
from torch import Tensor
|
|
from torch._dynamo.utils import ReinplaceCounters
|
|
from torch._higher_order_ops.auto_functionalize import (
|
|
auto_functionalized,
|
|
auto_functionalized_v2,
|
|
)
|
|
from torch._inductor.fx_passes.reinplace import reinplace_inplaceable_ops_core
|
|
from torch._inductor.test_case import run_tests, TestCase as InductorTestCase
|
|
from torch.testing._internal.common_utils import (
|
|
instantiate_parametrized_tests,
|
|
IS_LINUX,
|
|
parametrize,
|
|
subtest,
|
|
)
|
|
from torch.testing._internal.inductor_utils import GPU_TYPE, HAS_GPU
|
|
from torch.testing._internal.logging_utils import logs_to_string
|
|
|
|
|
|
aten = torch.ops.aten
|
|
|
|
|
|
const = torch.tensor(0.0)
|
|
device = GPU_TYPE
|
|
|
|
|
|
def num_reinplacing_failures():
|
|
return ReinplaceCounters.get_total_missed()
|
|
|
|
|
|
def miss_inplaced_bytes():
|
|
return ReinplaceCounters.get_total_missed_bytes()
|
|
|
|
|
|
@torch.library.custom_op("_reinplacing::sin", mutates_args={"result"})
|
|
def sin(x: torch.Tensor, result: torch.Tensor) -> None:
|
|
result.copy_(x.sin())
|
|
|
|
|
|
@torch.library.custom_op("_reinplacing::sin_cos", mutates_args={"out_sin", "out_cos"})
|
|
def sin_cos(x: torch.Tensor, out_sin: torch.Tensor, out_cos: torch.Tensor) -> None:
|
|
out_sin.copy_(x.sin())
|
|
out_cos.copy_(x.cos())
|
|
|
|
|
|
if HAS_GPU:
|
|
import triton # @manual
|
|
import triton.language as tl # @manual
|
|
|
|
@triton.jit
|
|
def sin_kernel(
|
|
in_ptr0,
|
|
out_ptr,
|
|
n_elements,
|
|
BLOCK_SIZE: "tl.constexpr",
|
|
):
|
|
pid = tl.program_id(axis=0)
|
|
block_start = pid * BLOCK_SIZE
|
|
offsets = block_start + tl.arange(0, BLOCK_SIZE)
|
|
mask = offsets < n_elements
|
|
x = tl.load(in_ptr0 + offsets, mask=mask)
|
|
output = tl.sin(x)
|
|
tl.store(out_ptr + offsets, output, mask=mask)
|
|
|
|
def sin_triton(x, out):
|
|
n_elements = x.numel()
|
|
sin_kernel[(n_elements,)](x, out, n_elements, BLOCK_SIZE=4)
|
|
|
|
else:
|
|
|
|
def sin_triton(x, out):
|
|
return
|
|
|
|
|
|
@torch.library.custom_op("test_view::boo", mutates_args={"x"})
|
|
def boo(x: torch.Tensor) -> None:
|
|
x.sin_()
|
|
|
|
|
|
class TestReinplacingPassCorrectness(InductorTestCase):
|
|
def setUp(self):
|
|
ReinplaceCounters.clear()
|
|
return super().setUp()
|
|
|
|
def _test(self, f):
|
|
nf = torch.compile(f)
|
|
inp = (
|
|
torch.randn(4, device=device),
|
|
torch.ones(2, device=device, dtype=torch.int),
|
|
)
|
|
inp2 = (inp[0].clone(), inp[1].clone())
|
|
self.assertEqual(f(*inp), nf(*inp2))
|
|
self.assertEqual(inp, inp2)
|
|
|
|
def test_dont_modify_live(self):
|
|
def f(x, y):
|
|
x = x.cos()
|
|
x2 = x.index_put((y,), const)
|
|
return x2, x
|
|
|
|
self._test(f)
|
|
|
|
def test_dont_modify_view_of_live(self):
|
|
def f(x, y):
|
|
x = x.cos()
|
|
x2 = aten.alias(x)
|
|
x2 = x2.index_put((y,), const)
|
|
y = x2 + x.cos()
|
|
return y
|
|
|
|
self._test(f)
|
|
|
|
def test_dont_modify_input(self):
|
|
def f(x, y):
|
|
return x.index_put((y,), const)
|
|
|
|
self._test(f)
|
|
|
|
def test_should_modify_inner(self):
|
|
def f(x, y):
|
|
x = x.cos()
|
|
x = x.index_put((y,), const)
|
|
return x
|
|
|
|
self._test(f)
|
|
|
|
def test_should_modify_input(self):
|
|
def f(x, y):
|
|
x = x.index_put_((y,), const)
|
|
return x
|
|
|
|
self._test(f)
|
|
|
|
def test_counters_functionalize_old(self):
|
|
ReinplaceCounters.clear()
|
|
|
|
def f(x):
|
|
out = torch.empty_like(x)
|
|
_, new_out = auto_functionalized(sin._opoverload, x=x, result=out)
|
|
y = out * new_out
|
|
return new_out, y
|
|
|
|
x = torch.randn(3, device=device)
|
|
gm = make_fx(f, tracing_mode="fake")(x)
|
|
reinplace_inplaceable_ops_core(gm.graph)
|
|
|
|
# We shouldn't have been able to reinplace `out` because it was used after
|
|
# auto_functionalized. Note that this usually doesn't happen in practice;
|
|
# we're artificially creating this example to test the counter.
|
|
# IF THIS NUMBER GOES TO ZERO, PLEASE FIND ANOTHER EXAMPLE
|
|
self.assertEqual(num_reinplacing_failures(), 1)
|
|
self.assertEqual(miss_inplaced_bytes(), 12)
|
|
|
|
def test_counters_functionalize_v2(self):
|
|
ReinplaceCounters.clear()
|
|
|
|
def f(x):
|
|
out = torch.empty_like(x)
|
|
_, new_out = auto_functionalized_v2(
|
|
sin._opoverload,
|
|
x=x,
|
|
_result_base_index=0,
|
|
_result_size=(3,),
|
|
_result_stride=(1,),
|
|
_result_storage_offset=0,
|
|
_all_bases=[out],
|
|
)
|
|
y = out * new_out
|
|
return new_out, y
|
|
|
|
x = torch.randn(3, device=device)
|
|
gm = make_fx(f, tracing_mode="fake")(x)
|
|
reinplace_inplaceable_ops_core(gm.graph)
|
|
|
|
# We shouldn't have been able to reinplace `out` because it was used after
|
|
# auto_functionalized. Note that this usually doesn't happen in practice;
|
|
# we're artificially creating this example to test the counter.
|
|
# IF THIS NUMBER GOES TO ZERO, PLEASE FIND ANOTHER EXAMPLE
|
|
self.assertEqual(num_reinplacing_failures(), 1)
|
|
|
|
def get_not_inplaced_count(self, graph):
|
|
counter = 0
|
|
auto_functionalized_found = False
|
|
for node in graph.nodes:
|
|
if (node.target == torch.ops.higher_order.auto_functionalized) or (
|
|
node.target == torch.ops.higher_order.auto_functionalized_v2
|
|
):
|
|
auto_functionalized_found = True
|
|
counter += len(node.meta["only_clone_these_tensors"])
|
|
assert auto_functionalized_found
|
|
return counter
|
|
|
|
def test_view_inplaced_functionalize_v2(self):
|
|
def f(arg0_1):
|
|
torch.ops.aten.select.int(arg0_1, 0, 0)
|
|
auto_functionalized = auto_functionalized_v2(
|
|
torch.ops.test_view.boo.default,
|
|
_x_base_index=0,
|
|
_x_size=(3,),
|
|
_x_stride=(1,),
|
|
_x_storage_offset=0,
|
|
_all_bases=[arg0_1],
|
|
)
|
|
getitem_1 = auto_functionalized[1]
|
|
torch.ops.aten.copy_.default(arg0_1, getitem_1)
|
|
return ()
|
|
|
|
x1 = torch.randn(3, device=device)
|
|
gm = make_fx(f, tracing_mode="fake")(x1)
|
|
reinplace_inplaceable_ops_core(gm.graph)
|
|
|
|
self.assertEqual(self.get_not_inplaced_count(gm.graph), 0)
|
|
|
|
# introduce a view another_view that is used `after` the copy
|
|
def test_view_inplaced2_functionalize_v2(self):
|
|
def f(arg0_1):
|
|
_select = torch.ops.aten.select.int(arg0_1, 0, 0)
|
|
another_view = arg0_1[2]
|
|
auto_functionalized = auto_functionalized_v2(
|
|
torch.ops.test_view.boo.default,
|
|
_x_base_index=0,
|
|
_x_size=(3,),
|
|
_x_stride=(1,),
|
|
_x_storage_offset=0,
|
|
_all_bases=[arg0_1],
|
|
)
|
|
getitem_1 = auto_functionalized[1]
|
|
_copy = torch.ops.aten.copy_.default(arg0_1, getitem_1)
|
|
return another_view
|
|
|
|
x1 = torch.randn(3, device=device)
|
|
gm = make_fx(f, tracing_mode="fake")(x1)
|
|
reinplace_inplaceable_ops_core(gm.graph)
|
|
|
|
self.assertEqual(self.get_not_inplaced_count(gm.graph), 0)
|
|
|
|
# introduce a view another_view that is used `before` the copy
|
|
def test_views_not_inplaced_functionalize_v2(self):
|
|
def f(arg0_1):
|
|
_select = torch.ops.aten.select.int(arg0_1, 0, 0)
|
|
another_view = arg0_1[2]
|
|
auto_functionalized = auto_functionalized_v2(
|
|
torch.ops.test_view.boo.default,
|
|
_x_base_index=0,
|
|
_x_size=(3,),
|
|
_x_stride=(1,),
|
|
_x_storage_offset=0,
|
|
_all_bases=[arg0_1],
|
|
)
|
|
getitem_1 = auto_functionalized[1]
|
|
use_another_view = another_view * 10
|
|
_copy = torch.ops.aten.copy_.default(arg0_1, getitem_1)
|
|
return use_another_view
|
|
|
|
x1 = torch.randn(3, device=device)
|
|
gm = make_fx(f, tracing_mode="fake")(x1)
|
|
reinplace_inplaceable_ops_core(gm.graph)
|
|
|
|
self.assertEqual(self.get_not_inplaced_count(gm.graph), 1)
|
|
|
|
# a view over input without copy node, inplace not allowed
|
|
def test_views_not_inplaced2_functionalize_v2(self):
|
|
def f(arg0_1):
|
|
_select = torch.ops.aten.select.int(arg0_1, 0, 0)
|
|
_another_view = arg0_1[2]
|
|
auto_functionalized = auto_functionalized_v2(
|
|
torch.ops.test_view.boo.default,
|
|
_x_base_index=0,
|
|
_x_size=(3,),
|
|
_x_stride=(1,),
|
|
_x_storage_offset=0,
|
|
_all_bases=[arg0_1],
|
|
)
|
|
_getitem_1 = auto_functionalized[1]
|
|
return
|
|
|
|
x1 = torch.randn(3, device=device)
|
|
gm = make_fx(f, tracing_mode="fake")(x1)
|
|
reinplace_inplaceable_ops_core(gm.graph)
|
|
|
|
self.assertEqual(self.get_not_inplaced_count(gm.graph), 1)
|
|
|
|
# no copy nodes, view over local, with a use for another view
|
|
def test_views_not_inplaced3_functionalize_v2(self):
|
|
def f(arg0_1):
|
|
a = torch.ones(10)
|
|
another_view = a[2]
|
|
auto_functionalized = auto_functionalized_v2(
|
|
torch.ops.test_view.boo.default,
|
|
_x_base_index=0,
|
|
_x_size=(),
|
|
_x_stride=(),
|
|
_x_storage_offset=0,
|
|
_all_bases=[a],
|
|
)
|
|
_getitem_1 = auto_functionalized[1]
|
|
return another_view
|
|
|
|
x1 = torch.randn(3, device=device)
|
|
gm = make_fx(f, tracing_mode="fake")(x1)
|
|
reinplace_inplaceable_ops_core(gm.graph)
|
|
|
|
self.assertEqual(self.get_not_inplaced_count(gm.graph), 1)
|
|
|
|
def test_multi_output_intermediate(self):
|
|
for requires_grad in [False, True]:
|
|
for enable_v2 in [False, True]:
|
|
with inductor_config.patch(
|
|
{"enable_auto_functionalized_v2": enable_v2}
|
|
):
|
|
ReinplaceCounters.clear()
|
|
|
|
def f(x):
|
|
out1 = torch.empty_like(x)
|
|
out2 = torch.empty_like(x)
|
|
sin_cos(x, out1, out2)
|
|
return out1, out2, x**2
|
|
|
|
x = torch.randn(3, device=device, requires_grad=requires_grad)
|
|
res1, res2, _ = torch.compile(f)(x)
|
|
self.assertEqual(res1, x.sin())
|
|
self.assertEqual(res2, x.cos())
|
|
self.assertEqual(num_reinplacing_failures(), 0)
|
|
|
|
def test_multiple_mutations(self):
|
|
ReinplaceCounters.clear()
|
|
|
|
def f(x, out):
|
|
sin(x, out)
|
|
sin(out, out)
|
|
sin(out, out)
|
|
return out
|
|
|
|
x = torch.randn(3, device=device)
|
|
out = torch.randn(3, device=device)
|
|
result = torch.compile(f)(x, out)
|
|
self.assertEqual(result, x.sin().sin().sin())
|
|
self.assertEqual(result, out)
|
|
self.assertEqual(num_reinplacing_failures(), 0)
|
|
|
|
def test_multiple_intermediate(self):
|
|
ReinplaceCounters.clear()
|
|
|
|
def f(x):
|
|
out = torch.empty_like(x)
|
|
sin(x, out)
|
|
sin(out, out)
|
|
sin(out, out)
|
|
return out
|
|
|
|
x = torch.randn(3, device=device)
|
|
result = torch.compile(f)(x)
|
|
self.assertEqual(result, x.sin().sin().sin())
|
|
self.assertEqual(num_reinplacing_failures(), 0)
|
|
|
|
def test_lists_functionalize_v2(self):
|
|
with inductor_config.patch({"enable_auto_functionalized_v2": True}):
|
|
|
|
@torch.library.custom_op("mylib::mutate_op", mutates_args={"y"})
|
|
def mutate_op(y: list[Tensor]) -> None:
|
|
y[0].add_(2)
|
|
y[1].add_(3)
|
|
|
|
@torch.compile(fullgraph=True, dynamic=False, backend="inductor")
|
|
def f(b):
|
|
mutate_op([b[0], b[1]])
|
|
|
|
x1 = torch.tensor([0.3, 0.4], device=device)
|
|
log_stream, ctx = logs_to_string(
|
|
"torch._inductor.compile_fx", "post_grad_graphs"
|
|
)
|
|
with ctx():
|
|
torch.compile(f, backend="inductor", fullgraph=True)(x1)
|
|
post_grad_graphs = "\n".join(
|
|
log_stream.getvalue().strip().split("\n")[3:]
|
|
).strip()
|
|
|
|
# We can inplace the base y. no clones emitted.
|
|
self.assertEqual(num_reinplacing_failures(), 0)
|
|
self.assertEqual(miss_inplaced_bytes(), 0)
|
|
self.assertEqual(post_grad_graphs.count("aten.clone"), 0)
|
|
|
|
def test_lists_old_functionalize(self):
|
|
with inductor_config.patch({"enable_auto_functionalized_v2": False}):
|
|
|
|
@torch.library.custom_op("mylib::mutate_op", mutates_args={"y"})
|
|
def mutate_op(y: list[Tensor]) -> None:
|
|
y[0].add_(2)
|
|
y[1].add_(3)
|
|
|
|
@torch.compile(fullgraph=True, dynamic=False, backend="inductor")
|
|
def f(b):
|
|
mutate_op([b[0], b[1]])
|
|
|
|
x1 = torch.tensor([0.3, 0.4], device=device)
|
|
log_stream, ctx = logs_to_string(
|
|
"torch._inductor.compile_fx", "post_grad_graphs"
|
|
)
|
|
with ctx():
|
|
torch.compile(f, backend="inductor", fullgraph=True)(x1)
|
|
post_grad_graphs = "\n".join(
|
|
log_stream.getvalue().strip().split("\n")[3:]
|
|
).strip()
|
|
|
|
# Can't reinplace on views yet (1 for the "entire list" failing to reinplace)
|
|
self.assertEqual(num_reinplacing_failures(), 1)
|
|
self.assertEqual(miss_inplaced_bytes(), 8)
|
|
|
|
# Both list inputs failed to reinplace. So we should have emitted clones for them.
|
|
self.assertEqual(post_grad_graphs.count("aten.clone"), 2)
|
|
|
|
def test_generalized_scatter(self):
|
|
# This is an integration test for the reinplacing pass.
|
|
def fn(x_1):
|
|
a = torch.ones([2, 3])
|
|
c = torch.ones(2)
|
|
a[:, 0].copy_(c)
|
|
|
|
d = a.clone()
|
|
e = torch.ops.aten.as_strided.default(d, [2], [3], 0)
|
|
f = e.clone()
|
|
|
|
g = torch.zeros(2)
|
|
e.copy_(g)
|
|
|
|
h = torch.zeros(2, 3)
|
|
h[:, 0].copy_(f)
|
|
|
|
add_1 = d + h
|
|
return add_1
|
|
|
|
x = torch.randn(2, 3)
|
|
expected = fn(x)
|
|
result = torch.compile(fn, fullgraph=True, backend="inductor")(x)
|
|
self.assertEqual(result, expected)
|
|
|
|
@parametrize(
|
|
"factory_op",
|
|
[
|
|
subtest(torch.ones_like, name="ones_like"),
|
|
subtest(torch.empty_like, name="empty_like"),
|
|
],
|
|
)
|
|
@parametrize(
|
|
"sin_op",
|
|
[
|
|
subtest(sin, name="sin_op"),
|
|
subtest(sin_triton, name="sin_triton"),
|
|
],
|
|
)
|
|
def test_partitioner_recomputes_factory(self, factory_op, sin_op):
|
|
class MySin(torch.autograd.Function):
|
|
@staticmethod
|
|
def forward(ctx, x):
|
|
out = factory_op(x)
|
|
sin_op(x, out)
|
|
ctx.save_for_backward(out)
|
|
return out
|
|
|
|
@staticmethod
|
|
def backward(ctx, grad):
|
|
(saved,) = ctx.saved_tensors
|
|
out = factory_op(grad)
|
|
sin_op(saved, out)
|
|
return out
|
|
|
|
@torch.compile(backend="inductor")
|
|
def f(x):
|
|
return MySin.apply(x)
|
|
|
|
x = torch.randn(3, requires_grad=True, device=device)
|
|
f(x)
|
|
self.assertEqual(num_reinplacing_failures(), 0)
|
|
|
|
|
|
instantiate_parametrized_tests(TestReinplacingPassCorrectness)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
if IS_LINUX and HAS_GPU:
|
|
run_tests(needs="filelock")
|