Files
pytorch/test/inductor/test_aot_inductor_utils.py
Tugsbayasgalan Manlaibaatar c73f5080de Migrating some more callsites (#163580)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/163580
Approved by: https://github.com/avikchaudhuri
ghstack dependencies: #165582
2025-10-19 15:52:17 +00:00

320 lines
11 KiB
Python

# Owner(s): ["module: inductor"]
import copy
import os
import shutil
import tempfile
import types
from typing import Any, Optional, TYPE_CHECKING, Union
import torch
import torch._export
import torch._inductor
import torch.export._trace
import torch.fx._pytree as fx_pytree
from torch._dynamo.testing import same
from torch._inductor import config
from torch._inductor.test_case import TestCase
from torch.testing import FileCheck
from torch.testing._internal.common_utils import IS_FBCODE, run_tests
from torch.testing._internal.inductor_utils import clone_preserve_strides_offset
from torch.utils import _pytree as pytree
if TYPE_CHECKING:
from torch._C._aoti import AOTIModelContainerRunner
class WrapperModule(torch.nn.Module):
def __init__(self, model):
super().__init__()
self.model = model
def forward(self, *args, **kwargs):
return self.model(*args, **kwargs)
class AOTIRunnerUtil:
@staticmethod
def legacy_compile(
model,
example_inputs,
options=None,
dynamic_shapes=None,
disable_constraint_solver=False,
):
if not isinstance(model, torch.nn.Module):
model = WrapperModule(model)
# The exact API is subject to change
if torch._inductor.config.is_predispatch:
ep = torch.export._trace._export(
model, example_inputs, dynamic_shapes=dynamic_shapes, pre_dispatch=True
)
gm = ep.module()
else:
with torch._export.config.patch(use_new_tracer_experimental=True):
gm = torch.export._trace._export_to_torch_ir(
model,
example_inputs,
dynamic_shapes=dynamic_shapes,
disable_constraint_solver=disable_constraint_solver,
# Disabling this flag, because instead we can rely on the mapping
# dynamo_flat_name_to_original_fqn which is coming from Dynamo.
restore_fqn=False,
)
if IS_FBCODE:
from deeplearning.aot_inductor.extern_node_thrift_serializer import (
thrift_serializer,
)
if options is None:
options = {}
options["extern_node_serializer"] = thrift_serializer
with torch.no_grad():
so_path = torch._inductor.aot_compile(gm, example_inputs, options=options) # type: ignore[arg-type]
return so_path
@staticmethod
def legacy_load_runner(device, so_path: str) -> "AOTIModelContainerRunner":
if IS_FBCODE:
from .fb import test_aot_inductor_model_runner_pybind # @manual
with tempfile.TemporaryDirectory() as temp_dir:
# copy *.so file to a unique path just before loading
# to avoid stale dlopen handles when an updated *.so
# from the same path is loaded repetitively in a test
temp_so_path = os.path.join(temp_dir, "model.so")
shutil.copy(so_path, temp_so_path)
# We also need to copy over the serialized extern_kernel_nodes for custom ops
extern_kernel_nodes_path = f"{so_path[:-3]}.json"
if os.path.isfile(extern_kernel_nodes_path):
temp_extern_kernel_nodes_path = os.path.join(temp_dir, "model.json")
shutil.copy(extern_kernel_nodes_path, temp_extern_kernel_nodes_path)
return test_aot_inductor_model_runner_pybind.Runner(
temp_so_path, device == "cpu"
)
else:
if device == "cpu":
return torch._C._aoti.AOTIModelContainerRunnerCpu(so_path, 1)
elif device == "xpu":
return torch._C._aoti.AOTIModelContainerRunnerXpu(so_path, 1, device)
elif device == "mps":
return torch._C._aoti.AOTIModelContainerRunnerMps(so_path, 1)
else:
return torch._C._aoti.AOTIModelContainerRunnerCuda(so_path, 1, device)
@staticmethod
def legacy_load(device, so_path):
# TODO: unify fbcode and oss behavior to only use torch._export.aot_load
if IS_FBCODE:
runner = AOTIRunnerUtil.legacy_load_runner(device, so_path)
def optimized(*args, **kwargs):
call_spec = runner.get_call_spec()
in_spec = pytree.treespec_loads(call_spec[0])
out_spec = pytree.treespec_loads(call_spec[1])
flat_inputs = fx_pytree.tree_flatten_spec((args, kwargs), in_spec)
flat_inputs = [x for x in flat_inputs if isinstance(x, torch.Tensor)]
flat_outputs = runner.run(flat_inputs)
return pytree.tree_unflatten(flat_outputs, out_spec)
return optimized
else:
return torch._export.aot_load(so_path, device)
@staticmethod
def legacy_run(
device: str,
model,
example_inputs,
options=None,
dynamic_shapes=None,
disable_constraint_solver=False,
):
so_path = AOTIRunnerUtil.legacy_compile(
model,
example_inputs,
options=options,
dynamic_shapes=dynamic_shapes,
disable_constraint_solver=disable_constraint_solver,
)
optimized = AOTIRunnerUtil.legacy_load(device, so_path)
return optimized(*example_inputs)
@staticmethod
def compile(
model: Union[torch.nn.Module, types.FunctionType],
example_inputs: tuple[torch.Tensor, ...],
inductor_configs: Optional[dict[str, Any]] = None,
dynamic_shapes: Optional[Union[dict[str, Any], tuple[Any], list[Any]]] = None,
):
if not isinstance(model, torch.nn.Module):
# This should really be the default behavior of torch.export.export
model = WrapperModule(model)
with (
torch.no_grad(),
torch._export.config.patch(use_new_tracer_experimental=True),
):
# strict=False needs extra migration work
ep = torch.export.export(
model,
example_inputs,
dynamic_shapes=dynamic_shapes,
strict=True,
prefer_deferred_runtime_asserts_over_guards=True,
)
package_path = torch._inductor.aoti_compile_and_package(
ep, inductor_configs=inductor_configs
)
return package_path
@staticmethod
def run(
model: Union[torch.nn.Module, types.FunctionType],
example_inputs: tuple[torch.Tensor, ...],
inductor_configs: Optional[dict[str, Any]] = None,
dynamic_shapes: Optional[Union[dict[str, Any], tuple[Any], list[Any]]] = None,
):
package_path = AOTIRunnerUtil.compile(
model,
example_inputs,
inductor_configs=inductor_configs,
dynamic_shapes=dynamic_shapes,
)
optimized = torch._inductor.aoti_load_package(package_path)
return optimized(*example_inputs)
@staticmethod
def run_multiple(
model: Union[torch.nn.Module, types.FunctionType],
list_example_inputs: list[tuple[torch.Tensor, ...]],
inductor_configs: Optional[dict[str, Any]] = None,
dynamic_shapes: Optional[Union[dict[str, Any], tuple[Any], list[Any]]] = None,
):
package_path = AOTIRunnerUtil.compile(
model,
list_example_inputs[0],
inductor_configs=inductor_configs,
dynamic_shapes=dynamic_shapes,
)
optimized = torch._inductor.aoti_load_package(package_path)
list_output_tensors = []
for example_inputs in list_example_inputs:
list_output_tensors.append(optimized(*example_inputs))
return list_output_tensors
def check_model(
self: TestCase,
model,
example_inputs,
options=None,
dynamic_shapes=None,
atol=None,
rtol=None,
):
with (
torch.no_grad(),
config.patch(
{
"aot_inductor.allow_stack_allocation": self.allow_stack_allocation,
"aot_inductor.use_minimal_arrayref_interface": self.use_minimal_arrayref_interface,
}
),
):
torch.manual_seed(0)
if not isinstance(model, types.FunctionType):
model = model.to(self.device)
# For non mixed device inputs with default "cpu",set the device manually.
if all(
t.device.type == "cpu"
for t in example_inputs
if isinstance(t, torch.Tensor)
):
example_inputs = tuple(
clone_preserve_strides_offset(x, device=self.device)
for x in example_inputs
)
ref_model = copy.deepcopy(model)
ref_inputs = copy.deepcopy(example_inputs)
expected = ref_model(*ref_inputs)
torch.manual_seed(0)
actual = AOTIRunnerUtil.run(
model,
example_inputs,
options,
dynamic_shapes,
)
self.assertEqual(actual, expected, atol=atol, rtol=rtol)
def check_model_with_multiple_inputs(
self: TestCase,
model,
list_example_inputs,
options=None,
dynamic_shapes=None,
):
with (
torch.no_grad(),
config.patch(
{
"aot_inductor.allow_stack_allocation": self.allow_stack_allocation,
"aot_inductor.use_minimal_arrayref_interface": self.use_minimal_arrayref_interface,
}
),
):
torch.manual_seed(0)
model = model.to(self.device)
ref_model = copy.deepcopy(model)
ref_inputs = copy.deepcopy(list_example_inputs)
list_expected = [ref_model(*inputs) for inputs in ref_inputs]
torch.manual_seed(0)
list_actual = AOTIRunnerUtil.run_multiple(
model, list_example_inputs, options, dynamic_shapes
)
self.assertTrue(same(list_actual, list_expected))
def code_check_count(
self: TestCase,
model,
example_inputs,
target_str: str,
target_count: int,
):
with (
torch.no_grad(),
config.patch(
{
"aot_inductor.allow_stack_allocation": self.allow_stack_allocation,
"aot_inductor.use_minimal_arrayref_interface": self.use_minimal_arrayref_interface,
}
),
):
package_path = torch._export.aot_compile(model, example_inputs)
with open(os.path.splitext(package_path)[0] + ".cpp") as cpp:
src_code = cpp.read()
FileCheck().check_count(
target_str,
target_count,
exactly=True,
).run(src_code)
if __name__ == "__main__":
run_tests()