Files
pytorch/test/distributed/_composable/test_replicate_with_compiler.py
Chien-Chin Huang c7193f4099 [DDP][PT2D][2D] Enable DDP + TP and add test for compiled DDP + TP (#120479)
This PR enables DDP + TP using a TP internal API. This should not be the final implementation. A more sound implementation is to inline the TP internal API in DDP. In other words, DDP needs to be aware of DTensor so that we can support 2D state_dict.

This PR adds a compiled DDP + TP test to ensure the new compiled DDP fusion doesn't break TP all_reduce.

**TODOs**

- [x] Implement DDP allreduce fusion algorithm for Inductor post_grad pass.
- [x] Add unit tests to ensure the fusion doesn't DDP + TP.
- [ ] Group different PG and data type of all_reduces.
- [ ] Mixed precision supports and tests
- [ ] Implement the fusions with Inductor IR.
- [ ] Add auto bucketing based on Inductor profiling.

Differential Revision: [D54105050](https://our.internmc.facebook.com/intern/diff/D54105050/)

Pull Request resolved: https://github.com/pytorch/pytorch/pull/120479
Approved by: https://github.com/wz337
ghstack dependencies: #113209
2024-03-13 21:41:22 +00:00

383 lines
13 KiB
Python

# Owner(s): ["oncall: distributed"]
import contextlib
import functools
import os
import unittest
from copy import deepcopy
from typing import Callable, Optional
import torch
import torch.distributed as dist
from torch import _inductor as inductor, nn
from torch._C import FileCheck
from torch._dynamo import compiled_autograd
from torch._dynamo.utils import counters
from torch._inductor.utils import run_and_get_triton_code
from torch.distributed._composable.replicate import replicate
from torch.distributed.algorithms.ddp_comm_hooks import (
default_hooks as ddp_default_hooks,
)
from torch.distributed.device_mesh import init_device_mesh
from torch.distributed.tensor.parallel import (
ColwiseParallel,
parallelize_module,
RowwiseParallel,
)
from torch.testing._internal.common_distributed import (
MultiProcessTestCase,
run_with_native_funcol,
skip_if_lt_x_gpu,
skip_if_rocm,
)
from torch.testing._internal.common_utils import run_tests
from torch.utils._triton import has_triton
from torch.utils.checkpoint import checkpoint
DIM = 2000
# TODO: figure out why buffer reuse conflicts with bucketing
torch._inductor.config.allow_buffer_reuse = False
class Net(nn.Module):
def __init__(self, checkpoint=False):
super().__init__()
self.fc1 = nn.Linear(DIM, DIM)
self.fc2 = nn.Linear(DIM, DIM)
self.fc3 = nn.Linear(DIM, DIM)
self.fc4 = nn.Linear(DIM, DIM)
self.use_checkpoint = checkpoint
def forward(self, x):
if self.use_checkpoint:
_fc1 = checkpoint(self.fc1, x, use_reentrant=False)
else:
_fc1 = self.fc1(x)
return self.fc4(self.fc3(self.fc2(_fc1)))
def compiler_fn(no_inductor=False):
def _compiler_fn(gm):
def inner_compiler(gm_, example_inputs_):
if no_inductor:
return gm_
else:
return inductor.compile(gm_, example_inputs_)
gm = torch.compile(gm, fullgraph=True, backend=inner_compiler)
return gm
return _compiler_fn
class ReplicateTest(MultiProcessTestCase):
@property
def world_size(self) -> int:
return min(2, torch.cuda.device_count())
def setUp(self) -> None:
super().setUp()
self._spawn_processes()
def tearDown(self):
super().tearDown()
try:
os.remove(self.file_name)
except OSError:
pass
def _test_compile(
self,
*,
use_gpu: bool,
no_sync: bool,
setup_func: Optional[Callable] = None,
no_inductor: bool = False,
no_compile_forward: bool = False,
):
backend = "nccl" if use_gpu else "gloo"
dist.init_process_group(
backend=backend,
rank=self.rank,
world_size=self.world_size,
store=dist.FileStore(self.file_name, self.world_size),
)
if use_gpu:
torch.cuda.set_device(f"cuda:{self.rank}")
device = torch.device("cuda")
else:
device = torch.device("cpu")
torch._dynamo.config.optimize_ddp = (
"python_reducer_without_compiled_forward"
if no_compile_forward
else "python_reducer"
)
torch.manual_seed(123)
model = Net().to(device)
input = torch.randn([1, DIM], device=device)
compiled_model = torch.compile(replicate(deepcopy(model)), fullgraph=True)
compiled_optim = torch.optim.Adam(compiled_model.parameters())
model = replicate(model)
optim = torch.optim.Adam(model.parameters())
if setup_func:
setup_func(model, compiled_model)
# Run multiple iterations so that we could test no_sync
for i in range(2):
# Setting a different random seed so that if the allreduces are not
# executed correctly, the gradients won't be correct compared to the
# eager DDP.
torch.manual_seed(123 + self.rank + i)
input = torch.randn([1, DIM], device=device)
if no_sync and i % 2 == 0:
context = replicate.state(model)._ddp.no_sync()
else:
context = contextlib.nullcontext()
with context:
loss = model(input).sum()
loss.backward()
compiled_m = getattr(compiled_model, "_orig_mod", compiled_model)
if no_sync and i % 2 == 0:
context = replicate.state(compiled_m)._ddp.no_sync()
else:
context = contextlib.nullcontext()
with context:
with compiled_autograd.enable(compiler_fn(no_inductor)):
compiled_loss = compiled_model(input).sum()
compiled_loss.backward()
if not no_sync or i % 2 == 1:
for p1, p2 in zip(model.parameters(), compiled_model.parameters()):
self.assertEqual(p1.grad, p2.grad)
compiled_optim.step()
# Right now we have to use `set_to_none=False`, otherwise
# the backward will be recompiled every iteration.
# With `set_to_none=False`, it will only be recompiled once.
# https://github.com/pytorch/pytorch/issues/118435
compiled_optim.zero_grad(set_to_none=False)
optim.step()
optim.zero_grad()
self.assertEqual(tuple(model.parameters()), tuple(compiled_model.parameters()))
def test_compile_cpu(self):
# Test the coalesced_op with CPU.
torch._inductor.config._fuse_ddp_communication_passes = [
"fuse_ddp_with_coalesced_op",
"schedule_comm_wait",
]
self._test_compile(use_gpu=False, no_sync=False)
def test_compile_cpu_no_sync(self):
# Test the coalesced_op with CPU.
torch._inductor.config._fuse_ddp_communication_passes = [
"fuse_ddp_with_coalesced_op",
"schedule_comm_wait",
]
self._test_compile(use_gpu=False, no_sync=True)
@unittest.skipIf(not has_triton(), "Inductor+gpu needs triton and recent GPU arch")
@skip_if_rocm
@skip_if_lt_x_gpu(2)
def test_compile_gpu(self):
self._test_compile(use_gpu=True, no_sync=False)
@unittest.skipIf(not has_triton(), "Inductor+gpu needs triton and recent GPU arch")
@skip_if_rocm
@skip_if_lt_x_gpu(2)
def test_compile_bf16(self):
def setup(model, compiled_model) -> None:
replicate.state(model)._ddp.register_comm_hook(
None, ddp_default_hooks.bf16_compress_hook
)
compiled_m = compiled_model._orig_mod
replicate.state(compiled_m)._ddp.register_comm_hook(
None, ddp_default_hooks.bf16_compress_hook
)
self._test_compile(
use_gpu=True, no_sync=False, setup_func=setup, no_inductor=True
)
@unittest.skipIf(not has_triton(), "Inductor+gpu needs triton and recent GPU arch")
@skip_if_rocm
@skip_if_lt_x_gpu(2)
def test_compile_fp16(self):
def setup(model, compiled_model) -> None:
replicate.state(model)._ddp.register_comm_hook(
None, ddp_default_hooks.fp16_compress_hook
)
compiled_m = compiled_model._orig_mod
replicate.state(compiled_m)._ddp.register_comm_hook(
None, ddp_default_hooks.fp16_compress_hook
)
# TODO: figure out why we need to disable Inductor to avoid test errors.
self._test_compile(
use_gpu=True, no_sync=False, setup_func=setup, no_inductor=True
)
@unittest.skipIf(not has_triton(), "Inductor+gpu needs triton and recent GPU arch")
@skip_if_rocm
@skip_if_lt_x_gpu(2)
def test_compile_backward_only(self):
self._test_compile(use_gpu=True, no_sync=False, no_compile_forward=True)
def _test_bucketing(self, init_process_group=True, loop=1):
if init_process_group:
dist.init_process_group(
backend="gloo",
rank=self.rank,
world_size=self.world_size,
store=dist.FileStore(self.file_name, self.world_size),
)
model = Net()
input = torch.randn([1, DIM])
torch._dynamo.config.optimize_ddp = "python_reducer"
compiled_model = torch.compile(replicate(deepcopy(model)), fullgraph=True)
def bwd(loss):
with compiled_autograd.enable(compiler_fn()):
loss.backward()
for i in range(loop):
loss = compiled_model(input).sum()
if i != loop - 1:
# Leave the last bwd for the run_and_get_triton_code.
bwd(loss)
code = run_and_get_triton_code(functools.partial(bwd, loss=loss))
self.assertEqual(counters["inductor"]["ddp_buckets"], 3)
return code
@run_with_native_funcol
def test_bucketing_coalesced_op(self):
torch._inductor.config._fuse_ddp_communication_passes = [
"fuse_ddp_with_coalesced_op",
"schedule_comm_wait",
]
# Gradient is None
code = self._test_bucketing()
self.assertEqual(counters["inductor"]["ddp_buckets"], 3)
fc = FileCheck()
for i in range(3):
fc.check("cpp_fused_").check(
"torch.ops._c10d_functional.all_reduce_coalesced_.default("
)
for i in range(3):
fc.check("torch.ops._c10d_functional.wait_tensor.default")
fc.run(code)
# Gradient is None
code = self._test_bucketing(init_process_group=False, loop=2)
self.assertEqual(counters["inductor"]["ddp_buckets"], 3)
fc = FileCheck()
for i in range(3):
fc.check("cpp_fused_").check(
"torch.ops._c10d_functional.all_reduce_coalesced_.default("
)
for i in range(3):
fc.check("torch.ops._c10d_functional.wait_tensor.default")
fc.run(code)
@run_with_native_funcol
def test_bucketing_concat_op(self):
torch._inductor.config._fuse_ddp_communication_passes = [
"fuse_ddp_with_concat_op",
"schedule_comm_wait",
]
# Gradient is None
code = self._test_bucketing()
self.assertEqual(counters["inductor"]["ddp_buckets"], 3)
fc = FileCheck()
for i in range(3):
fc.check("aten.flatten.using_ints(").check("cpp_fused_").check(
"torch.ops._c10d_functional.all_reduce_.default("
)
for i in range(3):
fc.check("torch.ops._c10d_functional.wait_tensor.default")
fc.run(code)
# Gradient is not None
code = self._test_bucketing(init_process_group=False, loop=2)
self.assertEqual(counters["inductor"]["ddp_buckets"], 3)
fc = FileCheck()
for i in range(3):
fc.check("aten.flatten.using_ints(").check("cpp_fused_").check(
"torch.ops._c10d_functional.all_reduce_.default("
)
for i in range(3):
fc.check("torch.ops._c10d_functional.wait_tensor.default")
fc.run(code)
class DDP_TP_Test(MultiProcessTestCase):
@property
def world_size(self) -> int:
return min(4, torch.cuda.device_count())
def setUp(self) -> None:
super().setUp()
self._spawn_processes()
def tearDown(self):
super().tearDown()
try:
os.remove(self.file_name)
except OSError:
pass
@unittest.skipIf(not has_triton(), "Inductor+gpu needs triton and recent GPU arch")
@skip_if_rocm
@skip_if_lt_x_gpu(4)
def test_ddp_tp(self):
torch.cuda.set_device(f"cuda:{self.rank}")
dist.init_process_group(
backend="nccl",
rank=self.rank,
world_size=self.world_size,
store=dist.FileStore(self.file_name, self.world_size),
)
model = Net().cuda()
compiled_model = deepcopy(model)
mesh_2d = init_device_mesh(
"cuda", (2, self.world_size // 2), mesh_dim_names=("dp", "tp")
)
tp_mesh = mesh_2d["tp"]
dp_mesh = mesh_2d["dp"]
parallelize_plan = {
"fc1": ColwiseParallel(),
"fc2": RowwiseParallel(),
"fc3": ColwiseParallel(),
"fc4": RowwiseParallel(),
}
model = parallelize_module(model, tp_mesh, parallelize_plan)
model = replicate(model, device_mesh=dp_mesh)
compiled_model = parallelize_module(compiled_model, tp_mesh, parallelize_plan)
compiled_model = replicate(compiled_model, device_mesh=dp_mesh)
compiled_model = torch.compile(compiled_model)
data = torch.randn([1, DIM]).cuda()
with compiled_autograd.enable(compiler_fn()):
loss = compiled_model(data).sum()
loss.backward()
loss = model(data).sum()
loss.backward()
for p1, p2 in zip(model.parameters(), compiled_model.parameters()):
self.assertEqual(p1.grad, p2.grad)
if __name__ == "__main__":
run_tests()