Files
pytorch/functorch/test/test_eager_transforms.py

837 lines
28 KiB
Python

from torch.testing._internal.common_utils import TestCase, run_tests
import torch
import torch.nn as nn
import torch.nn.functional as F
import unittest
import functools
import itertools
import warnings
import math
from typing import Callable, Type
from torch.testing._internal.common_device_type import instantiate_device_type_tests, \
skipCUDAIfNoMagma, onlyOnCPUAndCUDA
import types
from functools import partial
import functorch
from functorch import (
grad, vjp, vmap, jacrev, grad_and_value,
make_functional, make_functional_with_buffers,
)
# NB: numpy is a testing dependency!
import numpy as np
USE_TORCHVISION = False
try:
import torchvision
USE_TORCHVISION = True
except:
warnings.warn("Couldn't import torchvision. Some of our tests use it, try "
"to install it with commands from pytorch.org, post-fixed with "
"`--no-deps` to avoid overwriting the pytorch installation",
UserWarning)
class TestGradTransform(TestCase):
def test_primitive(self, device):
x = torch.randn([], device=device)
result = grad(torch.sin)(x)
self.assertEqual(result, torch.cos(x))
def test_composite_simple(self, device):
x = torch.randn(2, 3, 4, device=device)
result = grad(lambda x: torch.flatten(x).sum())(x)
self.assertEqual(result, torch.ones_like(x))
def test_composite_complicated(self, device):
x = torch.randn(3, device=device)
y = torch.randn(3, 5, device=device)
def foo(x, y):
result = x @ y
return result.sum()
result = grad(foo)(x, y)
x.requires_grad_()
out = foo(x, y)
expected, = torch.autograd.grad(out, x)
self.assertEqual(result, expected)
def test_composite_two_ops(self, device):
N, C = 2, 5
y = torch.randn(N, C, device=device)
targets = torch.randint(0, C, (N,), device=device)
def foo(y, targets):
return F.cross_entropy(y, targets)
result = grad(foo)(y, targets)
y.requires_grad_()
expected, = torch.autograd.grad(foo(y, targets), y)
self.assertEqual(result, expected)
def _test_attributes(self, get_attr_lambda, device):
x = torch.randn(2, 3, 5, dtype=torch.double, device=device)
expected = get_attr_lambda(x)
def foo(x):
self.assertEqual(get_attr_lambda(x), expected)
return x.sum()
grad(foo)(x)
def test_shape(self, device):
self._test_attributes(lambda x: x.shape, device)
def test_dtype(self, device):
self._test_attributes(lambda x: x.dtype, device)
def test_is_cuda(self, device):
self._test_attributes(lambda x: x.is_cuda, device)
def test_numel(self, device):
self._test_attributes(lambda x: x.numel(), device)
def test_inplace(self, device):
x = torch.randn([], device=device)
def foo(x):
return x.clone().sin_()
result = grad(foo)(x)
self.assertEqual(result, x.cos())
def test_inplace_on_view(self, device):
x = torch.randn(3, device=device)
def foo(x):
y = x.clone()
y0 = y[0]
y0.sin_()
return y.sum()
result = grad(foo)(x)
x.requires_grad_()
out = foo(x)
expected, = torch.autograd.grad(out, x)
self.assertEqual(result, expected)
def test_inplace_on_view_base(self, device):
x = torch.randn(3, device=device)
def foo(x):
y = x.clone()
y0 = y[0]
y.sin_()
return y0
result = grad(foo)(x)
x.requires_grad_()
out = foo(x)
expected, = torch.autograd.grad(out, x)
self.assertEqual(result, expected)
def test_nesting_simple(self, device):
x = torch.randn([], device=device)
result = grad(grad(torch.sin))(x)
self.assertEqual(result, -torch.sin(x))
def test_escaped_wrappers_are_marked_as_dead(self, device):
x = torch.randn([], device=device)
escaped = []
def foo(x):
y = x.sin()
escaped.append(y)
return y
result = grad(foo)(x)
self.assertEqual(functorch._C.dlevel(escaped[0]), -1)
def test_escaped_wrappers_are_ignored(self, device):
x = torch.randn([], device=device)
escaped = []
def foo(x):
y = x.sin()
escaped.append(y)
return y
result = grad(foo)(x)
something = escaped[0].sum()
self.assertEqual(functorch._C.dlevel(something), 0)
self.assertEqual(something, x.sin().sum())
def test_vjp(self, device):
x = torch.randn([], device=device)
out, vjp_fn = vjp(torch.sin, x)
self.assertEqual(out, x.sin())
v = torch.randn([], device=device)
result, = vjp_fn(v)
self.assertEqual(result, v * x.cos())
def test_composed_with_autograd(self, device):
x = torch.randn([], requires_grad=True, device=device)
y = grad(torch.sin)(x)
result, = torch.autograd.grad(y, x)
self.assertEqual(result, -x.sin())
def test_grad_of_vjp_composition(self, device):
x = torch.randn([], device=device)
y = torch.randn([], device=device)
def foo(x, y):
out, vjp_fn = vjp(torch.sin, x)
return grad(lambda y: vjp_fn(y)[0])(y)
result = foo(x, y)
expected = x.cos()
self.assertEqual(result, expected)
def test_vjp_of_grad_composition(self, device):
x = torch.randn([], device=device)
y = torch.randn([], device=device)
def foo(x, y):
out, vjp_fn = vjp(grad(torch.sin), x)
return vjp_fn(y)[0]
result = foo(x, y)
expected = -y * x.sin()
self.assertEqual(result, expected)
def test_grad_of_vjp_of_grad_composition(self, device):
x = torch.randn([], device=device)
y = torch.randn([], device=device)
def foo(x, y):
df, vjp_fn = vjp(grad(lambda x: -torch.cos(x)), x)
return grad(lambda y: vjp_fn(y)[0])(y)
result = foo(x, y)
expected = x.cos()
self.assertEqual(result, expected)
def test_views(self, device):
x = torch.randn([], requires_grad=True, device=device)
y = torch.randn([], requires_grad=True, device=device)
def silly_sin(x):
x = x.view([])
x = x.sin()
return x
def foo(x, y):
z1 = grad(silly_sin)(x)
z2 = torch.cos(y)
return z1 + z2
result = foo(x, y)
grads = torch.autograd.grad(result, [x, y])
self.assertEqual(grads[0], -x.sin())
self.assertEqual(grads[1], -y.sin())
def test_view_inplace_simple(self, device):
def foo(x):
x = x.clone()
x.view([]).sin_()
return x
x = torch.randn([], requires_grad=True, device=device)
result = grad(foo)(x)
self.assertEqual(result, x.cos())
def test_invalid_argnums(self, device):
x = torch.randn([])
y = torch.randn([])
with self.assertRaisesRegex(RuntimeError, 'but only'):
grad(torch.mul, argnums=-1)(x, y)
with self.assertRaisesRegex(RuntimeError, 'but only'):
grad(torch.mul, argnums=2)(x, y)
with self.assertRaisesRegex(RuntimeError, 'int or Tuple'):
grad(torch.mul, argnums=[0])(x, y)
with self.assertRaisesRegex(RuntimeError, 'must be int'):
grad(torch.mul, argnums=('0',))(x, y)
def test_argnums(self, device):
x = torch.randn([])
y = torch.randn([])
gx = grad(torch.mul, argnums=0)(x, y)
self.assertEqual(gx, y)
gy = grad(torch.mul, argnums=1)(x, y)
self.assertEqual(gy, x)
gx, = grad(torch.mul, argnums=(0,))(x, y)
self.assertEqual(gx, y)
gx, gy = grad(torch.mul, argnums=(0, 1))(x, y)
self.assertEqual(gx, y)
self.assertEqual(gy, x)
class TestVmapOfGrad(TestCase):
def test_per_sample_grads_inplace_view(self, device):
def compute_loss(weight, x, t):
x = x.mm(weight)
y = x.squeeze_(0)
return (y - t).sum()
weight = torch.randn(16, 2, device=device)
x = torch.randn(64, 1, 16, device=device)
t = torch.randn(64, 2, device=device)
result = vmap(partial(grad(compute_loss), weight))(x, t)
expected = [grad(compute_loss)(weight, x[i], t[i]) for i in range(64)]
expected = torch.stack(expected)
# TODO: Check if the rtol is a problem
self.assertEqual(result, expected, atol=0, rtol=5e-4)
def test_new_zeros_materializes_tensor(self, device):
N = 3
C = 5
def foo(y, x):
result = x.new_zeros((C,))
result.copy_(y)
return result.sum()
x = torch.randn(N, device=device)
y = torch.randn(N, C, device=device)
result = vmap(grad(foo))(y, x)
self.assertEqual(result, torch.ones_like(y))
def test_new_empty_materializes_tensor(self, device):
N = 3
C = 5
def foo(y, x):
result = x.new_empty((C,))
result.copy_(y)
return result.sum()
x = torch.randn(N, device=device)
y = torch.randn(N, C, device=device)
result = vmap(grad(foo))(y, x)
self.assertEqual(result, torch.ones_like(y))
def test_per_sample_grads_simple(self, device):
def compute_loss(weight, x, t):
y = x @ weight
return ((y - t) ** 2).sum()
weight = torch.randn(16, 2, device=device)
x = torch.randn(64, 16, device=device)
t = torch.randn(64, 2, device=device)
result = vmap(partial(grad(compute_loss), weight))(x, t)
expected = [grad(compute_loss)(weight, x[i], t[i]) for i in range(64)]
expected = torch.stack(expected)
# TODO: Check if the rtol is a problem
self.assertEqual(result, expected, atol=0, rtol=5e-4)
def test_per_sample_grads_embeddingnet(self, device):
class SampleNet(nn.Module):
def __init__(self, vocab_size: int):
super().__init__()
self.emb = nn.Embedding(vocab_size, 16)
self.fc1 = nn.Linear(16, 16)
self.fc2 = nn.Linear(16, 2)
def forward(self, x):
x = self.emb(x)
x = torch.transpose(x, -1, -2)
x = torch.mean(x, -1)
x = self.fc1(x)
x = F.relu(x)
x = self.fc2(x)
return x
def name(self):
return "SampleNet"
# Create our inputs...
vocab_size = 1000
batch_shape = [64]
words_per_sentence = 5
data = torch.randint(0, vocab_size, (*batch_shape, words_per_sentence), device=device)
targets = torch.randint(0, 1, (*batch_shape,), device=device)
# Construct our module
net = SampleNet(vocab_size).to(device=device)
criterion = nn.CrossEntropyLoss()
params = dict(net.named_parameters())
weights, net_func, _ = make_functional(net)
def compute_loss(weights, data, target):
output = net_func(weights, (data,))
result = criterion(output, target)
return result
expected = [grad(compute_loss)(weights, data[i], targets[i]) for i in range(64)]
expected = zip(*expected)
expected = tuple(torch.stack(shards) for shards in expected)
result = vmap(partial(grad(compute_loss), weights))(data, targets)
for r, e in zip(result, expected):
# TODO: Check if the rtol is a problem
self.assertEqual(r, e, atol=0, rtol=1e-4)
class TestJacrev(TestCase):
def test_simple(self, device):
x = torch.randn(3, device=device)
y = jacrev(torch.sin)(x)
expected = torch.diagflat(x.cos())
assert torch.allclose(y, expected)
def test_simple_not_flat(self, device):
x = torch.randn(2, 3, device=device)
y = jacrev(torch.sin)(x)
expected = torch.diagflat(x.view(-1).cos())
expected = expected.view(2, 3, 2, 3)
assert torch.allclose(y, expected)
def test_vmap_on_jacrev_simple(self, device):
x = torch.randn(2, 3, device=device)
y = vmap(jacrev(torch.sin))(x)
expected = torch.stack([torch.diagflat(x[i].cos()) for i in range(2)])
assert torch.allclose(y, expected)
def test_hessian_simple(self, device):
def foo(x):
return x.sin().sum()
x = torch.randn(3, device=device)
y = jacrev(jacrev(foo))(x)
expected = torch.diagflat(-x.sin())
assert torch.allclose(y, expected)
class TestComposability(TestCase):
def test_grad_grad(self, device):
x = torch.randn([], device=device)
y = grad(grad(torch.sin))(x)
self.assertEqual(y, -x.sin())
def test_grad_vmap(self, device):
def foo(x):
y = vmap(torch.sin)(x)
return y.sum()
x = torch.randn(3)
y = grad(foo)(x)
self.assertEqual(y, x.cos())
def test_grad_vjp(self, device):
x = torch.randn(3, device=device)
def foo(x):
_, vjp_fn = vjp(torch.sin, x)
return vjp_fn(x)[0].sum()
y = grad(foo)(x)
expected = grad(lambda x: (x * x.cos()).sum())(x)
self.assertEqual(y, expected)
def test_vmap_grad(self, device):
x = torch.randn(3, device=device)
y = vmap(grad(torch.sin))(x)
self.assertEqual(y, x.cos())
def test_vmap_vmap(self, device):
x = torch.randn(2, 3, device=device)
y = vmap(vmap(torch.sin))(x)
self.assertEqual(y, x.sin())
def test_vmap_vjp(self, device):
x = torch.randn(3, device=device)
_, vjp_fn = vjp(torch.sin, x)
def foo(x):
_, vjp_fn = vjp(torch.sin, x)
return vjp_fn(x)
y = vmap(foo)(x)
self.assertEqual(y, vjp_fn(x))
# TODO: there's a very interesting error message when the following
# is on CPU
xs = torch.randn(5, 3, device=device)
expected = torch.stack([vjp_fn(x)[0] for x in xs])
result = vmap(lambda x: vjp_fn(x)[0])(xs)
self.assertEqual(result, expected)
def test_vjp_grad(self, device):
x = torch.randn([], device=device)
y, vjp_fn = vjp(grad(torch.sin), x)
self.assertEqual(y, x.cos())
v = torch.randn([])
self.assertEqual(vjp_fn(v)[0], -x.sin() * v)
def test_vjp_vmap(self, device):
x = torch.randn(3, device=device)
y, vjp_fn = vjp(vmap(torch.sin), x)
self.assertEqual(y, x.sin())
v = torch.randn(3, device=device)
self.assertEqual(vjp_fn(v)[0], x.cos() * v)
def test_vjp_vjp(self, device):
x = torch.randn(3, device=device)
y, vjp_fn = vjp(torch.sin, x)
self.assertEqual(y, x.sin())
y, vjp_fn = vjp(lambda x: vjp_fn(x)[0], x)
self.assertEqual(y, x * x.cos())
y = vjp_fn(x)[0]
# Honestly IDK what the result here is... but at least it runs
class TestExamplesCorrectness(TestCase):
def test_maml_regression(self, device):
class ThreeLayerNet(nn.Module):
def __init__(self):
super(ThreeLayerNet, self).__init__()
self.fc1 = nn.Linear(1, 40)
self.relu1 = nn.ReLU()
self.fc2 = nn.Linear(40, 40)
self.relu2 = nn.ReLU()
self.fc3 = nn.Linear(40, 1)
def forward(self, x):
x = self.fc1(x)
x = self.relu1(x)
x = self.fc2(x)
x = self.relu2(x)
x = self.fc3(x)
return x
# The prototype doesn't like F.mse_loss.
def mse_loss(x, y):
return torch.mean((x - y) ** 2)
params, net, _ = make_functional(ThreeLayerNet().to(device))
K = 20
losses = []
num_tasks = 4
alpha = 0.1
def sample_tasks(outer_batch_size, inner_batch_size):
# Select amplitude and phase for the task
As = []
phases = []
for _ in range(outer_batch_size):
As.append(np.random.uniform(low=0.1, high=.5))
phases.append(np.random.uniform(low=0., high=np.pi))
def get_batch():
xs, ys = [], []
for A, phase in zip(As, phases):
x = np.random.uniform(low=-5., high=5., size=(inner_batch_size, 1))
y = A * np.sin(x + phase)
xs.append(x)
ys.append(y)
return torch.tensor(xs, dtype=torch.float, device=device), \
torch.tensor(ys, dtype=torch.float, device=device)
x1, y1 = get_batch()
x2, y2 = get_batch()
return x1, y1, x2, y2
def get_loss_for_task(use_transform, x1, y1, x2, y2):
def inner_loss(params, x1, y1):
f = net(params, (x1,))
loss = mse_loss(f, y1)
return loss
if use_transform:
grads = grad(inner_loss)(params, x1, y1)
else:
loss = inner_loss(params, x1, y1)
grads = torch.autograd.grad(loss, params, create_graph=True)
new_params = [(params[i] - alpha*grads[i]) for i in range(len(params))]
v_f = net(new_params, (x2,))
return mse_loss(v_f, y2)
task = sample_tasks(num_tasks, K)
# Compute with vmap+grad
inner_losses = vmap(partial(get_loss_for_task, True))\
(task[0], task[1], task[2], task[3])
loss2 = sum(inner_losses)/len(inner_losses)
result_grads = torch.autograd.grad(loss2, params)
# Compute without vmap+grad
inner_losses = [
get_loss_for_task(False, task[0][i], task[1][i], task[2][i], task[3][i])
for i in range(num_tasks)
]
loss2 = sum(inner_losses)/len(inner_losses)
expected_grads = torch.autograd.grad(loss2, params)
self.assertEqual(result_grads, expected_grads)
def test_maml_omniglot(self, device):
# TODO: there appears to be precision issues for float32
dtype = torch.double
# TODO: The prototype doesn't support in-place relu (and some other
# in-place operations. That can be fixed.)
inplace_relu = False
n_way = 5
n_inner_iter = 2
num_tasks = 2
class Flatten(nn.Module):
def forward(self, input):
return input.view(input.size(0), -1)
net = nn.Sequential(
nn.Conv2d(1, 64, 3),
nn.BatchNorm2d(64, momentum=1, affine=True),
nn.ReLU(inplace=inplace_relu),
nn.MaxPool2d(2, 2),
nn.Conv2d(64, 64, 3),
nn.BatchNorm2d(64, momentum=1, affine=True),
nn.ReLU(inplace=inplace_relu),
nn.MaxPool2d(2, 2),
nn.Conv2d(64, 64, 3),
nn.BatchNorm2d(64, momentum=1, affine=True),
nn.ReLU(inplace=inplace_relu),
nn.MaxPool2d(2, 2),
Flatten(),
nn.Linear(64, n_way)).to(device).to(dtype)
params, buffers, fnet, _, _, = make_functional_with_buffers(net)
net = (params, buffers, fnet)
def loss_for_task(net, n_inner_iter, use_transform, x_spt, y_spt, x_qry, y_qry):
params, buffers, fnet = net
querysz = x_qry.size(0)
def compute_loss(new_params, buffers, x, y):
logits = fnet(new_params, buffers, (x,))
loss = F.cross_entropy(logits, y)
return loss
new_params = params
for _ in range(n_inner_iter):
if use_transform:
grads = grad(compute_loss)(new_params, buffers, x_spt, y_spt)
else:
res = compute_loss(new_params, buffers, x_spt, y_spt)
grads = torch.autograd.grad(res, new_params, create_graph=True)
new_params = [p - g * 1e-1 for p, g, in zip(new_params, grads)]
qry_logits = fnet(new_params, buffers, (x_qry,))
qry_loss = F.cross_entropy(qry_logits, y_qry)
qry_acc = (qry_logits.argmax(
dim=1) == y_qry).sum() / querysz
return qry_loss, qry_acc
# Get some sample inputs...
x_spt = torch.randn(num_tasks, 25, 1, 28, 28, dtype=dtype, device=device)
y_spt = torch.randint(0, 5, (num_tasks, 25), device=device)
x_qry = torch.randn(num_tasks, 75, 1, 28, 28, dtype=dtype,device=device)
y_qry = torch.randint(0, 5, (num_tasks, 75), device=device)
# compute with vmap + grad
compute_loss = partial(loss_for_task, net, n_inner_iter, True)
qry_losses, _ = vmap(compute_loss)(x_spt, y_spt, x_qry, y_qry)
result_grads = torch.autograd.grad(qry_losses.sum(), params)
# compute without vmap + grad
compute_loss = partial(loss_for_task, net, n_inner_iter, False)
losses = [compute_loss(x_spt[i], y_spt[i], x_qry[i], y_qry[i])[0]
for i in range(num_tasks)]
expected_grads = torch.autograd.grad(sum(losses), params)
self.assertEqual(result_grads, expected_grads)
def test_ensemble_regression(self, device):
def make_spirals(n_samples, noise_std=0., rotations=1.):
ts = torch.linspace(0, 1, n_samples)
rs = ts ** 0.5
thetas = rs * rotations * 2 * math.pi
signs = torch.randint(0, 2, (n_samples,)) * 2 - 1
labels = (signs > 0).to(torch.long)
xs = rs * signs * torch.cos(thetas) + torch.randn(n_samples) * noise_std
ys = rs * signs * torch.sin(thetas) + torch.randn(n_samples) * noise_std
points = torch.stack([xs, ys], dim=1)
return points.to(device), labels.to(device)
points, labels = make_spirals(100, noise_std=0.05)
class MLPClassifier(nn.Module):
def __init__(self, hidden_dim=32, n_classes=2):
super().__init__()
self.hidden_dim = hidden_dim
self.n_classes = n_classes
self.fc1 = nn.Linear(2, self.hidden_dim)
self.fc2 = nn.Linear(self.hidden_dim, self.n_classes)
def forward(self, x):
x = self.fc1(x)
x = F.relu(x)
x = self.fc2(x)
x = F.log_softmax(x, -1)
return x
loss_fn = nn.NLLLoss()
weights, func_model, _ = make_functional(MLPClassifier().to(device))
def train_step_fn(use_transform, weights, batch, targets, lr=0.2):
def compute_loss(weights, batch, targets):
output = func_model(weights, (batch,))
loss = loss_fn(output, targets)
return loss
if use_transform:
grad_weights, loss = grad_and_value(compute_loss)(weights, batch, targets)
else:
loss = compute_loss(weights, batch, targets)
grad_weights = torch.autograd.grad(loss, weights)
new_weights = []
with torch.no_grad():
for grad_weight, weight in zip(grad_weights, weights):
new_weights.append(weight - grad_weight * lr)
# NB: return looks weird because torch.vmap must return Tensors
return (loss, *new_weights)
def unpack(train_result):
return train_result[0], train_result[1:]
def init_fn(num_models):
models = tuple(MLPClassifier().to(device) for _ in range(num_models))
weights = tuple(make_functional(model)[0] for model in models)
weights = tuple(zip(*weights))
weights = tuple(torch.stack(shards).detach() for shards in weights)
return weights
def slice_weights(batched_weights, index):
return tuple(weight[index].detach().requires_grad_() for weight in batched_weights)
batched_weights = init_fn(num_models=2)
parallel_train_step_fn = vmap(partial(train_step_fn, True), in_dims=(0, None, None))
result_loss, result_weights = unpack(parallel_train_step_fn(batched_weights, points, labels))
loss0, weights0 = unpack(train_step_fn(False, slice_weights(batched_weights, 0), points, labels))
loss1, weights1 = unpack(train_step_fn(False, slice_weights(batched_weights, 1), points, labels))
expected_loss = torch.stack([loss0, loss1])
expected_weights = tuple(torch.stack([w0, w1]) for w0, w1 in zip(weights0, weights1))
self.assertEqual(result_loss, expected_loss)
self.assertEqual(result_weights, expected_weights)
@unittest.skipIf(not USE_TORCHVISION, "test requires torchvision")
def test_resnet18_per_sample_grads(self, device):
# Straight out of opacus
def _replace_child(
root: nn.Module, child_name: str, converter: Callable[[nn.Module], nn.Module]
) -> None:
# find the immediate parent
parent = root
nameList = child_name.split(".")
for name in nameList[:-1]:
parent = parent._modules[name]
# set to identity
parent._modules[nameList[-1]] = converter(parent._modules[nameList[-1]])
def replace_all_modules(
root: nn.Module,
target_class: Type[nn.Module],
converter: Callable[[nn.Module], nn.Module],
) -> nn.Module:
# base case
if isinstance(root, target_class):
return converter(root)
for name, obj in root.named_modules():
if isinstance(obj, target_class):
_replace_child(root, name, converter)
return root
def _batchnorm_to_groupnorm(module: nn.modules.batchnorm._BatchNorm) -> nn.Module:
return nn.GroupNorm(min(32, module.num_features), module.num_features, affine=True)
def convert_batchnorm_modules(
model: nn.Module,
converter: Callable[
[nn.modules.batchnorm._BatchNorm], nn.Module
] = _batchnorm_to_groupnorm,
) -> nn.Module:
return replace_all_modules(model, nn.modules.batchnorm._BatchNorm, converter)
import torchvision.models as models
model = convert_batchnorm_modules(models.resnet18(num_classes=10)).to(device)
criterion = nn.CrossEntropyLoss()
weights, func_model, descriptors = make_functional(model)
def compute_loss(weights, image, target):
images = image.unsqueeze(0)
targets = target.unsqueeze(0)
output = func_model(weights, (images,))
loss = criterion(output, targets)
return loss
batch_size = 3
images = torch.randn(batch_size, 3, 32, 32, device=device)
targets = torch.randint(0, 10, (batch_size,), device=device)
result_grads = vmap(grad(compute_loss), in_dims=(None, 0, 0))(weights, images, targets)
expected_grads = [
torch.autograd.grad(compute_loss(weights, images[i], targets[i]), weights)
for i in range(batch_size)
]
expected_grads = [torch.stack(shards) for shards in zip(*expected_grads)]
self.assertEqual(result_grads, expected_grads)
only_for = ("cpu", "cuda")
instantiate_device_type_tests(
TestGradTransform,
globals(),
only_for=only_for,
)
instantiate_device_type_tests(
TestVmapOfGrad,
globals(),
only_for=only_for,
)
instantiate_device_type_tests(
TestJacrev,
globals(),
only_for=only_for,
)
instantiate_device_type_tests(
TestComposability,
globals(),
only_for=only_for,
)
instantiate_device_type_tests(
TestExamplesCorrectness,
globals(),
only_for=only_for,
)
if __name__ == '__main__':
run_tests()