Files
pytorch/torch/sparse
mingfeima c620ece726 port sparse_mm.reduce to pytorch and optimize it on CPU (#83727)
### Motivation of this PR

This patch is to migrate `spmm_reduce` from `torch-sparse` (a 3rd party dependency for PyG) to `torch`, which is a response to the initial proposal for fusion of **Gather, Apply Scatter** in Message Passing of GNN inference/training. https://github.com/pytorch/pytorch/issues/71300

**GAS** is the major step for Message Passing, the behavior of **GAS** can be classified into 2 kinds depending on the storage type of `EdgeIndex` which records the connections of nodes:

* COO: the hotspot is `scatter_reduce`
* CSR: the hotspot is `spmm_reduce`

The reduce type can be choose from: "max", "mean", "max",  "min".

extend `torch.sparse.mm` with an `reduce` argument, maps to `torch.sparse_mm.reduce` internally.
`sparse_mm_reduce` is registered under the TensorTypeId of `SparseCsrCPU`, and this operator requires an internal interface `_sparse_mm_reduce_impl` which has dual outputs:
* `out` - the actual output
* `arg_out` - records output indices in the non zero elements if the reduce type is "max" or "min", this is only useful for training. So for inference, it will not be calculated.

### Performance

Benchmark on GCN for obgn-products on Xeon single socket, the workload is improved by `4.3x` with this patch.

Performance benefit for training will be bigger, the original backward impl for `sum|mean` is sequential; the original backward impl for `max|min` is not fused.

#### before:
```
-----------------------------  ------------  ------------  ------------  ------------  ------------  ------------
                         Name    Self CPU %      Self CPU   CPU total %     CPU total  CPU time avg    # of Calls
-----------------------------  ------------  ------------  ------------  ------------  ------------  ------------
       torch_sparse::spmm_sum        97.09%       56.086s        97.09%       56.088s        6.232s             9
                 aten::linear         0.00%      85.000us         1.38%     795.485ms      88.387ms             9
                 aten::matmul         0.00%      57.000us         1.38%     795.260ms      88.362ms             9
                     aten::mm         1.38%     795.201ms         1.38%     795.203ms      88.356ms             9
                   aten::relu         0.00%      50.000us         0.76%     440.434ms      73.406ms             6
              aten::clamp_min         0.76%     440.384ms         0.76%     440.384ms      73.397ms             6
                   aten::add_         0.57%     327.801ms         0.57%     327.801ms      36.422ms             9
            aten::log_softmax         0.00%      23.000us         0.10%      55.503ms      18.501ms             3
```

#### after
```
-----------------------------  ------------  ------------  ------------  ------------  ------------  ------------
                         Name    Self CPU %      Self CPU   CPU total %     CPU total  CPU time avg    # of Calls
-----------------------------  ------------  ------------  ------------  ------------  ------------  ------------
               aten::spmm_sum        87.35%       11.826s        87.36%       11.827s        1.314s             9
                 aten::linear         0.00%      92.000us         5.87%     794.451ms      88.272ms             9
                 aten::matmul         0.00%      62.000us         5.87%     794.208ms      88.245ms             9
                     aten::mm         5.87%     794.143ms         5.87%     794.146ms      88.238ms             9
                   aten::relu         0.00%      53.000us         3.35%     452.977ms      75.496ms             6
              aten::clamp_min         3.35%     452.924ms         3.35%     452.924ms      75.487ms             6
                   aten::add_         2.58%     348.663ms         2.58%     348.663ms      38.740ms             9
                 aten::argmax         0.42%      57.473ms         0.42%      57.475ms      14.369ms             4
            aten::log_softmax         0.00%      22.000us         0.39%      52.605ms      17.535ms             3
```

Pull Request resolved: https://github.com/pytorch/pytorch/pull/83727
Approved by: https://github.com/jgong5, https://github.com/cpuhrsch, https://github.com/rusty1s, https://github.com/pearu
2023-02-10 15:56:40 +00:00
..