mirror of
https://github.com/pytorch/pytorch.git
synced 2025-10-21 05:34:18 +08:00
See https://github.com/pytorch/pytorch/pull/129751#issue-2380881501. Most changes are auto-generated by linter. You can review these PRs via: ```bash git diff --ignore-all-space --ignore-blank-lines HEAD~1 ``` Pull Request resolved: https://github.com/pytorch/pytorch/pull/129754 Approved by: https://github.com/ezyang
42 lines
1.2 KiB
Python
42 lines
1.2 KiB
Python
import time
|
|
from collections import namedtuple
|
|
|
|
from torch.utils import ThroughputBenchmark
|
|
|
|
|
|
NUM_LOOP_ITERS = 1000
|
|
BenchmarkConfig = namedtuple("BenchmarkConfig", "num_warmup_iters num_iters")
|
|
ModuleConfig = namedtuple("ModuleConfig", "pt_fn c2_op num_params graph_mode")
|
|
|
|
|
|
def ms_to_us(time_ms):
|
|
return time_ms * 1e3
|
|
|
|
|
|
def secs_to_us(time_s):
|
|
return time_s * 1e6
|
|
|
|
|
|
def secs_to_ms(time_s):
|
|
return time_s * 1e3
|
|
|
|
|
|
def benchmark_using_throughput_benchmark(config, module):
|
|
print("Benchmarking via ThroughputBenchmark")
|
|
bench = ThroughputBenchmark(module.module)
|
|
bench.add_input(*module.tensor_inputs)
|
|
stats = bench.benchmark(1, config.num_warmup_iters, config.num_iters)
|
|
return stats.latency_avg_ms / NUM_LOOP_ITERS
|
|
|
|
|
|
def benchmark_module(config, module, use_throughput_benchmark=False):
|
|
if use_throughput_benchmark:
|
|
return benchmark_using_throughput_benchmark(config, module)
|
|
module.forward(config.num_warmup_iters)
|
|
print(f"Running module for {config.num_iters} iterations")
|
|
start = time.time()
|
|
module.forward(config.num_iters)
|
|
end = time.time()
|
|
time_elapsed_s = end - start
|
|
return secs_to_ms(time_elapsed_s) / config.num_iters / NUM_LOOP_ITERS
|