mirror of
https://github.com/pytorch/pytorch.git
synced 2025-10-20 21:14:14 +08:00
Summary: Resubmit #20698 which got messed up. Idea is that when PyTorch is used in a custom build environment (e.g. Facebook), it's useful to track usage of various APIs centrally. This PR introduces a simple very lightweight mechanism to do so - only first invocation of a trigger point would be logged. This is significantly more lightweight than #18235 and thus we can allow to put logging in e.g. TensorImpl. Also adds an initial list of trigger points. Trigger points are added in such a way that no static initialization triggers them, i.e. just linking with libtorch.so will not cause any logging. Further suggestions of what to log are welcomed. Pull Request resolved: https://github.com/pytorch/pytorch/pull/20745 Differential Revision: D15429196 Pulled By: dzhulgakov fbshipit-source-id: a5e41a709a65b7ebccc6b95f93854e583cf20aca
219 lines
8.5 KiB
Python
219 lines
8.5 KiB
Python
from collections import defaultdict
|
|
from torch._six import container_abcs
|
|
|
|
import torch
|
|
from copy import deepcopy
|
|
from itertools import chain
|
|
|
|
|
|
class _RequiredParameter(object):
|
|
"""Singleton class representing a required parameter for an Optimizer."""
|
|
def __repr__(self):
|
|
return "<required parameter>"
|
|
|
|
required = _RequiredParameter()
|
|
|
|
|
|
class Optimizer(object):
|
|
r"""Base class for all optimizers.
|
|
|
|
.. warning::
|
|
Parameters need to be specified as collections that have a deterministic
|
|
ordering that is consistent between runs. Examples of objects that don't
|
|
satisfy those properties are sets and iterators over values of dictionaries.
|
|
|
|
Arguments:
|
|
params (iterable): an iterable of :class:`torch.Tensor` s or
|
|
:class:`dict` s. Specifies what Tensors should be optimized.
|
|
defaults: (dict): a dict containing default values of optimization
|
|
options (used when a parameter group doesn't specify them).
|
|
"""
|
|
|
|
def __init__(self, params, defaults):
|
|
torch._C._log_api_usage_once("python.optimizer")
|
|
self.defaults = defaults
|
|
|
|
if isinstance(params, torch.Tensor):
|
|
raise TypeError("params argument given to the optimizer should be "
|
|
"an iterable of Tensors or dicts, but got " +
|
|
torch.typename(params))
|
|
|
|
self.state = defaultdict(dict)
|
|
self.param_groups = []
|
|
|
|
param_groups = list(params)
|
|
if len(param_groups) == 0:
|
|
raise ValueError("optimizer got an empty parameter list")
|
|
if not isinstance(param_groups[0], dict):
|
|
param_groups = [{'params': param_groups}]
|
|
|
|
for param_group in param_groups:
|
|
self.add_param_group(param_group)
|
|
|
|
def __getstate__(self):
|
|
return {
|
|
'defaults': self.defaults,
|
|
'state': self.state,
|
|
'param_groups': self.param_groups,
|
|
}
|
|
|
|
def __setstate__(self, state):
|
|
self.__dict__.update(state)
|
|
|
|
def __repr__(self):
|
|
format_string = self.__class__.__name__ + ' ('
|
|
for i, group in enumerate(self.param_groups):
|
|
format_string += '\n'
|
|
format_string += 'Parameter Group {0}\n'.format(i)
|
|
for key in sorted(group.keys()):
|
|
if key != 'params':
|
|
format_string += ' {0}: {1}\n'.format(key, group[key])
|
|
format_string += ')'
|
|
return format_string
|
|
|
|
def state_dict(self):
|
|
r"""Returns the state of the optimizer as a :class:`dict`.
|
|
|
|
It contains two entries:
|
|
|
|
* state - a dict holding current optimization state. Its content
|
|
differs between optimizer classes.
|
|
* param_groups - a dict containing all parameter groups
|
|
"""
|
|
# Save ids instead of Tensors
|
|
def pack_group(group):
|
|
packed = {k: v for k, v in group.items() if k != 'params'}
|
|
packed['params'] = [id(p) for p in group['params']]
|
|
return packed
|
|
param_groups = [pack_group(g) for g in self.param_groups]
|
|
# Remap state to use ids as keys
|
|
packed_state = {(id(k) if isinstance(k, torch.Tensor) else k): v
|
|
for k, v in self.state.items()}
|
|
return {
|
|
'state': packed_state,
|
|
'param_groups': param_groups,
|
|
}
|
|
|
|
def load_state_dict(self, state_dict):
|
|
r"""Loads the optimizer state.
|
|
|
|
Arguments:
|
|
state_dict (dict): optimizer state. Should be an object returned
|
|
from a call to :meth:`state_dict`.
|
|
"""
|
|
# deepcopy, to be consistent with module API
|
|
state_dict = deepcopy(state_dict)
|
|
# Validate the state_dict
|
|
groups = self.param_groups
|
|
saved_groups = state_dict['param_groups']
|
|
|
|
if len(groups) != len(saved_groups):
|
|
raise ValueError("loaded state dict has a different number of "
|
|
"parameter groups")
|
|
param_lens = (len(g['params']) for g in groups)
|
|
saved_lens = (len(g['params']) for g in saved_groups)
|
|
if any(p_len != s_len for p_len, s_len in zip(param_lens, saved_lens)):
|
|
raise ValueError("loaded state dict contains a parameter group "
|
|
"that doesn't match the size of optimizer's group")
|
|
|
|
# Update the state
|
|
id_map = {old_id: p for old_id, p in
|
|
zip(chain(*(g['params'] for g in saved_groups)),
|
|
chain(*(g['params'] for g in groups)))}
|
|
|
|
def cast(param, value):
|
|
r"""Make a deep copy of value, casting all tensors to device of param."""
|
|
if isinstance(value, torch.Tensor):
|
|
# Floating-point types are a bit special here. They are the only ones
|
|
# that are assumed to always match the type of params.
|
|
if param.is_floating_point():
|
|
value = value.to(param.dtype)
|
|
value = value.to(param.device)
|
|
return value
|
|
elif isinstance(value, dict):
|
|
return {k: cast(param, v) for k, v in value.items()}
|
|
elif isinstance(value, container_abcs.Iterable):
|
|
return type(value)(cast(param, v) for v in value)
|
|
else:
|
|
return value
|
|
|
|
# Copy state assigned to params (and cast tensors to appropriate types).
|
|
# State that is not assigned to params is copied as is (needed for
|
|
# backward compatibility).
|
|
state = defaultdict(dict)
|
|
for k, v in state_dict['state'].items():
|
|
if k in id_map:
|
|
param = id_map[k]
|
|
state[param] = cast(param, v)
|
|
else:
|
|
state[k] = v
|
|
|
|
# Update parameter groups, setting their 'params' value
|
|
def update_group(group, new_group):
|
|
new_group['params'] = group['params']
|
|
return new_group
|
|
param_groups = [
|
|
update_group(g, ng) for g, ng in zip(groups, saved_groups)]
|
|
self.__setstate__({'state': state, 'param_groups': param_groups})
|
|
|
|
def zero_grad(self):
|
|
r"""Clears the gradients of all optimized :class:`torch.Tensor` s."""
|
|
for group in self.param_groups:
|
|
for p in group['params']:
|
|
if p.grad is not None:
|
|
p.grad.detach_()
|
|
p.grad.zero_()
|
|
|
|
def step(self, closure):
|
|
r"""Performs a single optimization step (parameter update).
|
|
|
|
Arguments:
|
|
closure (callable): A closure that reevaluates the model and
|
|
returns the loss. Optional for most optimizers.
|
|
"""
|
|
raise NotImplementedError
|
|
|
|
def add_param_group(self, param_group):
|
|
r"""Add a param group to the :class:`Optimizer` s `param_groups`.
|
|
|
|
This can be useful when fine tuning a pre-trained network as frozen layers can be made
|
|
trainable and added to the :class:`Optimizer` as training progresses.
|
|
|
|
Arguments:
|
|
param_group (dict): Specifies what Tensors should be optimized along with group
|
|
specific optimization options.
|
|
"""
|
|
assert isinstance(param_group, dict), "param group must be a dict"
|
|
|
|
params = param_group['params']
|
|
if isinstance(params, torch.Tensor):
|
|
param_group['params'] = [params]
|
|
elif isinstance(params, set):
|
|
raise TypeError('optimizer parameters need to be organized in ordered collections, but '
|
|
'the ordering of tensors in sets will change between runs. Please use a list instead.')
|
|
else:
|
|
param_group['params'] = list(params)
|
|
|
|
for param in param_group['params']:
|
|
if not isinstance(param, torch.Tensor):
|
|
raise TypeError("optimizer can only optimize Tensors, "
|
|
"but one of the params is " + torch.typename(param))
|
|
if not param.is_leaf:
|
|
raise ValueError("can't optimize a non-leaf Tensor")
|
|
|
|
for name, default in self.defaults.items():
|
|
if default is required and name not in param_group:
|
|
raise ValueError("parameter group didn't specify a value of required optimization parameter " +
|
|
name)
|
|
else:
|
|
param_group.setdefault(name, default)
|
|
|
|
param_set = set()
|
|
for group in self.param_groups:
|
|
param_set.update(set(group['params']))
|
|
|
|
if not param_set.isdisjoint(set(param_group['params'])):
|
|
raise ValueError("some parameters appear in more than one parameter group")
|
|
|
|
self.param_groups.append(param_group)
|