Files
pytorch/caffe2
Dmytro Dzhulgakov c25e33789e Lightweight at-most-once logging for API usage (#20745)
Summary:
Resubmit #20698 which got messed up.

Idea is that when PyTorch is used in a custom build environment (e.g. Facebook), it's useful to track usage of various APIs centrally. This PR introduces a simple very lightweight mechanism to do so - only first invocation of a trigger point would be logged. This is significantly more lightweight than #18235 and thus we can allow to put logging in e.g. TensorImpl.

Also adds an initial list of trigger points. Trigger points are added in such a way that no static initialization triggers them, i.e. just linking with libtorch.so will not cause any logging. Further suggestions of what to log are welcomed.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/20745

Differential Revision: D15429196

Pulled By: dzhulgakov

fbshipit-source-id: a5e41a709a65b7ebccc6b95f93854e583cf20aca
2019-05-23 23:17:59 -07:00
..
2019-05-16 23:00:09 -07:00
2019-05-16 18:17:18 -07:00
2018-10-04 02:09:56 -07:00
2018-10-04 02:09:56 -07:00

Caffe2

Jenkins Build Status

Caffe2 is a lightweight, modular, and scalable deep learning framework. Building on the original Caffe, Caffe2 is designed with expression, speed, and modularity in mind.

Questions and Feedback

Please use Github issues (https://github.com/pytorch/pytorch/issues) to ask questions, report bugs, and request new features.

Further Resources on Caffe2.ai