mirror of
https://github.com/pytorch/pytorch.git
synced 2025-10-20 21:14:14 +08:00
Summary: Resubmit #20698 which got messed up. Idea is that when PyTorch is used in a custom build environment (e.g. Facebook), it's useful to track usage of various APIs centrally. This PR introduces a simple very lightweight mechanism to do so - only first invocation of a trigger point would be logged. This is significantly more lightweight than #18235 and thus we can allow to put logging in e.g. TensorImpl. Also adds an initial list of trigger points. Trigger points are added in such a way that no static initialization triggers them, i.e. just linking with libtorch.so will not cause any logging. Further suggestions of what to log are welcomed. Pull Request resolved: https://github.com/pytorch/pytorch/pull/20745 Differential Revision: D15429196 Pulled By: dzhulgakov fbshipit-source-id: a5e41a709a65b7ebccc6b95f93854e583cf20aca
212 lines
6.2 KiB
C++
212 lines
6.2 KiB
C++
#include <c10/core/TensorImpl.h>
|
|
|
|
#include <c10/core/Backend.h>
|
|
#include <c10/core/WrapDimMinimal.h>
|
|
#include <c10/util/Optional.h>
|
|
|
|
C10_DEFINE_bool(
|
|
caffe2_keep_on_shrink,
|
|
true,
|
|
"If set, keeps memory when a tensor is shrinking its size.");
|
|
|
|
C10_DEFINE_int64(
|
|
caffe2_max_keep_on_shrink_memory,
|
|
LLONG_MAX,
|
|
"The maximum memory in bytes to keep on shrink, if the difference between "
|
|
"tensor sizes is bigger than this then tensor will be reset.");
|
|
|
|
namespace c10 {
|
|
|
|
at::Tensor& TensorImpl::grad() {
|
|
if (autograd_meta()) {
|
|
return autograd_meta()->grad();
|
|
} else {
|
|
AT_ERROR("grad is not implemented for Tensor");
|
|
}
|
|
}
|
|
|
|
const at::Tensor& TensorImpl::grad() const {
|
|
if (autograd_meta()) {
|
|
return autograd_meta()->grad();
|
|
} else {
|
|
AT_ERROR("grad is not implemented for Tensor");
|
|
}
|
|
}
|
|
|
|
TensorImpl::TensorImpl(Storage&& storage, TensorTypeId type_id)
|
|
: TensorImpl(std::move(storage), type_id, storage.dtype(), storage.device()) {}
|
|
|
|
TensorImpl::TensorImpl(TensorTypeId type_id, const caffe2::TypeMeta& data_type, c10::optional<c10::Device> device_opt)
|
|
: TensorImpl({}, type_id, data_type, std::move(device_opt)) {}
|
|
|
|
TensorImpl::TensorImpl(Storage&& storage, TensorTypeId type_id, const caffe2::TypeMeta& data_type,
|
|
c10::optional<c10::Device> device_opt)
|
|
: storage_(std::move(storage)),
|
|
sizes_{0},
|
|
storage_offset_(0),
|
|
numel_(0),
|
|
data_type_(data_type),
|
|
device_opt_(device_opt),
|
|
type_id_(type_id) {
|
|
if (type_id != UndefinedTensorId()) {
|
|
AT_ASSERT(data_type.id() == caffe2::TypeIdentifier::uninitialized() ||
|
|
device_opt_.has_value());
|
|
// UndefinedTensorImpl is a singleton, so we skip logging it
|
|
C10_LOG_API_USAGE_ONCE("tensor.create");
|
|
}
|
|
// we would also like to check that non-cpu devices have an index, but some Caffe2 operators create
|
|
// Storages with default devices.
|
|
strides_.push_back(1);
|
|
}
|
|
|
|
IntArrayRef TensorImpl::sizes() const {
|
|
return sizes_;
|
|
}
|
|
|
|
IntArrayRef TensorImpl::strides() const {
|
|
return strides_;
|
|
}
|
|
|
|
bool TensorImpl::compute_contiguous() const {
|
|
bool is_contiguous = true;
|
|
if (is_empty())
|
|
return is_contiguous;
|
|
int64_t z = 1;
|
|
for (int64_t d = dim() - 1; d >= 0; d--) {
|
|
if (size(d) != 1) {
|
|
if (stride(d) == z) {
|
|
z *= size(d);
|
|
} else {
|
|
is_contiguous = false;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
return is_contiguous;
|
|
}
|
|
|
|
void TensorImpl::release_resources() {
|
|
autograd_meta_.reset();
|
|
if (storage_) {
|
|
storage_ = {};
|
|
}
|
|
}
|
|
|
|
int64_t TensorImpl::dim() const {
|
|
return sizes_.size();
|
|
}
|
|
|
|
int64_t TensorImpl::size(int64_t d) const {
|
|
d = at::maybe_wrap_dim(d, dim(), false);
|
|
return sizes_[d];
|
|
}
|
|
|
|
int64_t TensorImpl::stride(int64_t d) const {
|
|
d = at::maybe_wrap_dim(d, dim(), false);
|
|
return strides_[d];
|
|
}
|
|
|
|
TensorImpl* TensorImpl::maybe_zero_dim(bool condition_when_zero_dim) {
|
|
bool set_zero_dim = condition_when_zero_dim && this->sizes().size() == 1 && this->size(0) == 1;
|
|
if (set_zero_dim) {
|
|
resize_dim(0);
|
|
}
|
|
return this;
|
|
}
|
|
|
|
bool TensorImpl::has_storage() const {
|
|
return storage_;
|
|
}
|
|
|
|
bool TensorImpl::is_contiguous(at::MemoryFormat memory_format) const {
|
|
#ifdef DEBUG
|
|
AT_ASSERT(compute_contiguous() == is_contiguous_);
|
|
#endif
|
|
if (memory_format == at::MemoryFormat::ChannelsLast) {
|
|
if (dim() == 4) {
|
|
auto strides_1 = 1;
|
|
auto strides_3 = sizes_[1];
|
|
auto strides_2 = strides_3 * sizes_[3];
|
|
auto strides_0 = strides_2 * sizes_[2];
|
|
if (strides_0 == strides_[0] && strides_1 == strides_[1] &&
|
|
strides_2 == strides_[2] && strides_3 == strides_[3]) {
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
return is_contiguous_;
|
|
}
|
|
|
|
const Storage& TensorImpl::storage() const {
|
|
return storage_;
|
|
}
|
|
|
|
static void deletePlacementDeleteContext(void* ptr) {
|
|
delete static_cast<PlacementDeleteContext*>(ptr);
|
|
}
|
|
|
|
at::DataPtr PlacementDeleteContext::makeDataPtr(
|
|
at::DataPtr&& data_ptr,
|
|
PlacementDtor placement_dtor,
|
|
size_t size,
|
|
at::Device device) {
|
|
auto* ptr = data_ptr.get();
|
|
return {ptr,
|
|
new PlacementDeleteContext(std::move(data_ptr), placement_dtor, size),
|
|
&deletePlacementDeleteContext,
|
|
device};
|
|
}
|
|
|
|
AutogradMetaInterface::~AutogradMetaInterface() {}
|
|
|
|
/// NOTE [ Treating Variables as non-Variables in type dispatch ]
|
|
///
|
|
/// Previously, in VariableType_*.cpp (generated by gen_variable_type.py), when
|
|
/// a function is using the 'use_derived' strategy, we call its implementation
|
|
/// on the base non-Variable type (`baseType`), passing unwrapped tensors to the
|
|
/// call so that any `.dispatch_type()` calls in the implementation can treat the passed
|
|
/// tensors as non-Variables and won't dispatch back to functions in VariableType.
|
|
///
|
|
/// However, after the Variable/Tensor merge, there is no concept of unwrapping
|
|
/// a tensor anymore, and directly passing variables to the base type calls will
|
|
/// cause the `.dispatch_type()` dispatch in the implementation to treat the tensor as a
|
|
/// variable, and any function dispatch based on `.dispatch_type()` will dispatch back to
|
|
/// VariableType, which is not what we want.
|
|
///
|
|
/// The solution to the above problem is to add `at::NonVariableTypeMode`, which
|
|
/// when enabled will cause `legacyTensorType()` and `getType()` to always return
|
|
/// non-Variable type, even if the tensor being called on is a variable.
|
|
///
|
|
/// TODO: Since `torch::NoGradGuard` serves the same purpose in libtorch, we should
|
|
/// merge these two thread-local guards.
|
|
|
|
/// In the CAFFE2_FB_LIMITED_MOBILE_CAPABILITY build setting,
|
|
/// thread_local is not supported. In that case, we don't provide
|
|
/// `at::NonVariableTypeMode`.
|
|
#ifndef CAFFE2_FB_LIMITED_MOBILE_CAPABILITY
|
|
|
|
thread_local bool NonVariableTypeMode_enabled = false;
|
|
|
|
bool NonVariableTypeMode::is_enabled() {
|
|
return NonVariableTypeMode_enabled;
|
|
}
|
|
|
|
void NonVariableTypeMode::set_enabled(bool enabled) {
|
|
NonVariableTypeMode_enabled = enabled;
|
|
}
|
|
|
|
#else // defined(CAFFE2_FB_LIMITED_MOBILE_CAPABILITY)
|
|
|
|
bool NonVariableTypeMode::is_enabled() {
|
|
throw std::runtime_error("NonVariableTypeMode is not supported on mobile");
|
|
}
|
|
|
|
void NonVariableTypeMode::set_enabled(bool enabled) {
|
|
throw std::runtime_error("NonVariableTypeMode is not supported on mobile");
|
|
}
|
|
|
|
#endif
|
|
|
|
} // namespace c10
|