mirror of
https://github.com/pytorch/pytorch.git
synced 2025-10-21 05:34:18 +08:00
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/19997 ghimport-source-id: 420d4a68a1ef879beee2734adba8abb575e0b0ab Differential Revision: D15231375 Pulled By: ilia-cher fbshipit-source-id: ce7248ea2ebb54d25c9d831c6e3f23f3534557dd
76 lines
2.0 KiB
Python
76 lines
2.0 KiB
Python
from __future__ import absolute_import
|
|
from __future__ import division
|
|
from __future__ import print_function
|
|
from __future__ import unicode_literals
|
|
|
|
import numpy as np
|
|
import itertools
|
|
import random
|
|
|
|
|
|
"""Performance microbenchmarks's utils.
|
|
|
|
This module contains utilities for writing microbenchmark tests.
|
|
"""
|
|
|
|
|
|
def shape_to_string(shape):
|
|
return ', '.join([str(x) for x in shape])
|
|
|
|
|
|
def numpy_random_fp32(*shape):
|
|
"""Return a random numpy tensor of float32 type.
|
|
"""
|
|
# TODO: consider more complex/custom dynamic ranges for
|
|
# comprehensive test coverage.
|
|
return np.random.rand(*shape).astype(np.float32)
|
|
|
|
|
|
def cross_product(*inputs):
|
|
"""
|
|
Return a list of cartesian product of input iterables.
|
|
For example, cross_product(A, B) returns ((x,y) for x in A for y in B).
|
|
"""
|
|
return (list(itertools.product(*inputs)))
|
|
|
|
|
|
def get_n_rand_nums(min_val, max_val, n):
|
|
random.seed((1 << 32) - 1)
|
|
return random.sample(range(min_val, max_val), n)
|
|
|
|
|
|
def generate_configs(**configs):
|
|
"""
|
|
Given configs from users, we want to generate different combinations of
|
|
those configs
|
|
For example, given M = ((1, 2), N = (4, 5)) and sample_func being cross_product,
|
|
we will generate (({'M': 1}, {'N' : 4}),
|
|
({'M': 1}, {'N' : 5}),
|
|
({'M': 2}, {'N' : 4}),
|
|
({'M': 2}, {'N' : 5}))
|
|
"""
|
|
assert 'sample_func' in configs, "Missing sample_func to generat configs"
|
|
result = []
|
|
for key, values in configs.items():
|
|
if key == 'sample_func':
|
|
continue
|
|
tmp_result = []
|
|
for value in values:
|
|
tmp_result.append({key : value})
|
|
result.append(tmp_result)
|
|
|
|
results = configs['sample_func'](*result)
|
|
return results
|
|
|
|
|
|
def is_caffe2_enabled(framework_arg):
|
|
return 'Caffe2' in framework_arg
|
|
|
|
|
|
def is_pytorch_enabled(framework_arg):
|
|
return 'PyTorch' in framework_arg
|
|
|
|
|
|
def get_requested_frameworks(framework_arg):
|
|
return [fr.strip() for fr in framework_arg.split(',') if len(fr.strip()) > 0]
|