Files
pytorch/benchmarks/operator_benchmark/benchmark_pytorch.py
Mingzhe Li c1ed0150c5 canonical example of torch.add benchmark (#23402)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/23402

This diff tries to make torch.add as a canonical example for op benchmark. Once it lands, we will also modify all other op benchmarks to be uniform with this example. With that, when people are adding new ops, they can copy paste any existing code.

Test Plan:
buck run mode/dev-nosan caffe2/benchmarks/operator_benchmark/pt:add_test -- --iterations 3

```
# ----------------------------------------
# PyTorch/Caffe2 Operator Micro-benchmarks
# ----------------------------------------
# Tag : short

# Benchmarking PyTorch: add
# Mode: Eager
# Name: add_M8_N16_K32_devicecpu
# Input: M: 8, N: 16, K: 32, device: cpu
Forward Execution Time (us) : 146.586

# Benchmarking PyTorch: add
# Mode: Eager
# Name: add_M8_N16_K32_devicecuda
# Input: M: 8, N: 16, K: 32, device: cuda
Forward Execution Time (us) : 92.151

# Benchmarking PyTorch: add
# Mode: Eager
# Name: add_M16_N16_K64_devicecpu
# Input: M: 16, N: 16, K: 64, device: cpu
Forward Execution Time (us) : 428.421

# Benchmarking PyTorch: add
# Mode: Eager
# Name: add_M16_N16_K64_devicecuda
# Input: M: 16, N: 16, K: 64, device: cuda
Forward Execution Time (us) : 89.811

# Benchmarking PyTorch: add
# Mode: Eager
# Name: add_M64_N64_K128_devicecpu
# Input: M: 64, N: 64, K: 128, device: cpu
Forward Execution Time (us) : 11857.012

# Benchmarking PyTorch: add
# Mode: Eager
# Name: add_M64_N64_K128_devicecuda
# Input: M: 64, N: 64, K: 128, device: cuda
Forward Execution Time (us) : 93.918

# Benchmarking PyTorch: add
# Mode: Eager
# Name: add_M8_N16_K32_devicecpu_bwdall
# Input: M: 8, N: 16, K: 32, device: cpu
Backward Execution Time (us) : 990.125

# Benchmarking PyTorch: add
# Mode: Eager
# Name: add_M8_N16_K32_devicecpu_bwd1
# Input: M: 8, N: 16, K: 32, device: cpu
Backward Execution Time (us) : 781.217

# Benchmarking PyTorch: add
# Mode: Eager
# Name: add_M8_N16_K32_devicecpu_bwd2
# Input: M: 8, N: 16, K: 32, device: cpu
Backward Execution Time (us) : 777.307
```

Reviewed By: zheng-xq

Differential Revision: D16501974

fbshipit-source-id: f1eec010eabf11ce4fcf6cfe6f85cd5241a7022d
2019-10-09 11:24:10 -07:00

162 lines
5.9 KiB
Python

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals
import benchmark_core
import torch
import cpp_extension # noqa
"""PyTorch performance microbenchmarks.
This module contains PyTorch-specific functionalities for performance
microbenchmarks.
"""
class TorchBenchmarkBase(object):
""" This is a base class used to create Pytorch operator benchmark.
module_name is the name of the operator being benchmarked.
test_name is the name (it's created by concatenating all the
inputs) of a specific test
"""
def __init__(self):
self.user_given_name = None
self._jit_forward = None
self._pass_count = 0
self._num_inputs_require_grads = 0
def _set_backward_test(self, is_backward):
self._is_backward = is_backward
def auto_set(self):
""" This is used to automatically set the require_grad for the backward patch.
It is implemented based on two counters. One counter to save the number of
times init has been called. The other counter to save the number of times
this function itself has been called. In the very first time init is called,
this function counts how many inputs require gradient. In each of the
following init calls, this function will return only one true value.
Here is an example:
...
self.v1 = torch.rand(M, N, K, requires_grad=self.auto_set())
self.v2 = torch.rand(M, N, K, requires_grad=self.auto_set())
...
"""
if not self._is_backward:
return False
if self._pass_count == 0:
self._num_inputs_require_grads += 1
return True
else:
self._auto_set_counter += 1
return (self._pass_count == self._auto_set_counter)
def forward(self):
pass
def _wrap_forward(self, foo):
""" The function passed to JIT trace must have at least one argument,
this function is to wrap the forward method to meet that requirement.
_consume op is used to avoid the dead-code-elimination optimization
in JIT.
"""
return torch.ops.operator_benchmark._consume(self.forward())
def _generate_jit_forward_graph(self):
""" generate a graph for the forward function via tracing
"""
func = torch.jit.trace(self._wrap_forward, torch.rand(1))
place_holder = torch.rand(1) # noqa
@torch.jit.script
def _jit_forward_graph(iters, place_holder):
# type: (int, Tensor)
result = torch.jit.annotate(torch.Tensor, None)
for _ in range(iters):
result = func(place_holder)
return result
return _jit_forward_graph
def module_name(self):
""" this is used to label the operator being benchmarked
"""
if self.user_given_name:
return self.user_given_name
return self.__class__.__name__
def set_module_name(self, name):
self.user_given_name = name
def test_name(self, **kargs):
""" this is a globally unique name which can be used to
label a specific test
"""
# This is a list of attributes which will not be included
# in the test name.
skip_key_list = ['device']
test_name_str = []
for key in kargs:
value = kargs[key]
test_name_str.append(
('' if key in skip_key_list else key)
+ str(value if type(value) != bool else int(value)))
name = (self.module_name() + '_' +
'_'.join(test_name_str)).replace(" ", "")
return name
class PyTorchOperatorTestCase(object):
""" This class includes all the information needed to benchmark an operator.
op_bench: it's a user-defined class (child of TorchBenchmarkBase)
which includes input and operator, .etc
test_config: a namedtuple includes test_name, input_shape, tag, run_backward.
When run_backward is false, the run_forward method will be executed,
When run_backward is true, run_forward_eager and _output_mean will be
executed to generate output. Then, run_backward will be executed.
"""
def __init__(self, op_bench, test_config):
self.test_config = test_config
self.op_bench = op_bench
self.place_holder_tensor = torch.ones(1)
self.framework = "PyTorch"
def run_jit_forward(self, num_runs):
""" Run the forward path of an op with JIT mode
"""
if self.op_bench._jit_forward is None:
self.op_bench._jit_forward = self.op_bench._generate_jit_forward_graph()
self.op_bench._jit_forward(num_runs, self.place_holder_tensor)
def run_forward(self, num_runs):
""" Run the forward path of an op with eager mode
"""
for _ in range(num_runs):
self.output = self.op_bench.forward()
def _output_mean(self):
""" TODO (mingzhe): it is not necessary to sum up everything by myself,
torch.autograd.backward do take a gradient tensor. By default, it
is the same shape as your output tensor, with all 1s.
Mathematically, it is the same as if the output is summed together.
So we should be able to get ride of this method.
dummy function for gradient calculation
"""
self.mean = self.output.mean()
def run_backward(self, num_runs):
""" Run the backward path of an op in many iterations
"""
# TODO: can we use JIT here to reduce python overhead?
for _ in range(num_runs):
self.mean.backward(retain_graph=True)
def register_pytorch_op_test_case(op_bench, test_config):
test_case = PyTorchOperatorTestCase(op_bench, test_config)
benchmark_core._register_test(test_case)