Files
pytorch/test/test_stateless.py
Jane Xu c19cda5782 [skip ci] Add test owners for a special hi-pri class of tests (#67553)
Summary:
Action following https://github.com/pytorch/pytorch/issues/66232

This change does require some context: there were several suggestions regarding what to do about this group of tests: tests that are core and crucial to all of PyTorch and are too broad to be owned by one team.
1. Let's add a "module: core" and put people behind it! This idea sounds appealing unless you are one of the people backing the label. From talking to albanD among others, this idea of putting all these core tests on the shoulder of a few people or one team isn't super fair and I have not yet found anyone willing to take on this job.
2. Taking advantage of the fact that we already have a triaging oncall that takes turns triaging issues, we can leave these tests essentially unlabeled and allow the oncall to triage these tests. Since these tests are crucial to PyTorch, we'll add the "high priority" label to mark them different from other unowned tests (see https://github.com/pytorch/pytorch/issues/67552).
3. I _could_ still create an unbacked label "module: core" and attribute these tests there, but I don't like the idea of creating a facade that the tests are "triaged" to a label when no one is actually taking a look.

Now we could potentially break these tests down into smaller files so that each piece _could_ be owned by a team, but 1. I don't know if this is currently feasible and 2. This approach does not prevent that from happening in the future.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/67553

Reviewed By: albanD

Differential Revision: D32025004

Pulled By: janeyx99

fbshipit-source-id: 1fb1aa4c27e305695ab6e80ae3d02f90519939c0
2021-10-29 12:17:21 -07:00

148 lines
5.9 KiB
Python

# Owner(s): ["module: nn"]
import unittest
import torch
import torch.nn.utils._stateless as _stateless
from torch.testing._internal.common_cuda import TEST_MULTIGPU
from torch.testing._internal.common_utils import run_tests, TestCase
class MockModule(torch.nn.Module):
def __init__(self):
super().__init__()
self.l1 = torch.nn.Linear(1, 1)
self.register_buffer('buffer', torch.ones(1))
def forward(self, x):
return self.l1(x) + self.buffer
class TestStatelessFunctionalAPI(TestCase):
def _run_call_with_mock_module(self, module, device='cpu', prefix=''):
x = torch.rand((1, 1)).to(device)
weight = torch.tensor([[1.0]], device=device)
bias = torch.tensor([0.0], device=device)
buffer = torch.tensor([0.0], device=device)
if prefix != '':
parameters = {f'{prefix}.l1.weight': weight,
f'{prefix}.l1.bias': bias,
f'{prefix}.buffer': buffer}
else:
parameters = {'l1.weight': weight,
'l1.bias': bias,
'buffer': buffer}
to_check = module
if prefix != '':
to_check = getattr(module, prefix)
prev_weight = to_check.l1.weight.clone()
prev_buffer = to_check.buffer.clone()
# the parameters represent an identity function contrary to the
# existing params in module. So here we expect the result to be the
# same as the input if the weight swapping went well.
res = _stateless.functional_call(module, parameters, x)
self.assertEqual(x, res)
# check that the weight remain unmodified
cur_weight = to_check.l1.weight
cur_buffer = to_check.buffer
self.assertEqual(cur_weight, prev_weight)
self.assertEqual(cur_buffer, prev_buffer)
def test_functional_call(self):
module = MockModule()
self._run_call_with_mock_module(module)
def test_functional_call_with_jit(self):
module = MockModule()
jit_module = torch.jit.script(module)
with self.assertRaisesRegex(
RuntimeError,
r'delete methods or parameters'
):
self._run_call_with_mock_module(jit_module)
@unittest.skipIf(not TEST_MULTIGPU, 'multi-GPU not supported')
def test_functional_call_with_data_parallel(self):
module = MockModule()
module.cuda()
dp_module = torch.nn.DataParallel(module, [0, 1])
self._run_call_with_mock_module(dp_module, device='cuda', prefix='module')
def test_functional_call_with_gradient(self):
module = MockModule()
x = torch.rand((1, 1))
weight = torch.tensor([[1.0]], requires_grad=True)
bias = torch.tensor([0.0], requires_grad=True)
buffer = torch.tensor([0.0])
parameters = {'l1.weight': weight,
'l1.bias': bias,
'buffer': buffer}
res = _stateless.functional_call(module, parameters, x)
# Check that a backward step calculates the gradient of the supplied parameters
res.backward()
self.assertIsNotNone(weight.grad)
self.assertIsNotNone(bias.grad)
self.assertIsNone(buffer.grad)
# Gradient was not calculated for the module stated and buffers
self.assertIsNone(module.l1.weight.grad)
self.assertIsNone(module.l1.bias.grad)
self.assertIsNone(module.buffer.grad)
def test_functional_batch_norm(self):
module = torch.nn.BatchNorm1d(10)
module.train() # Allow stats update
# lets replace the running_mean buffer and check if its correctly updated
x = torch.full((20, 10), 128.0)
rm = torch.zeros(10)
parameters = {'running_mean': rm}
prev_rm = module.running_mean.clone()
res = _stateless.functional_call(module, parameters, x)
cur_rm = module.running_mean
self.assertEqual(cur_rm, prev_rm)
self.assertEqual(rm, torch.full((10,), 12.8))
# Now run functional without reparametrization and check that the module has
# been updated
res = _stateless.functional_call(module, {}, x)
self.assertEqual(module.running_mean, torch.full((10,), 12.8))
def test_circular_references(self):
module = MockModule()
# Add a circular reference
module.l1.m = module
x = torch.rand((1, 1))
weight = torch.tensor([[1.0]])
bias = torch.tensor([0.0])
buffer = torch.tensor([0.0])
parameters = {'l1.m.l1.weight': weight,
'l1.bias': bias,
'l1.m.buffer': buffer}
prev_weight = module.l1.weight.clone()
prev_buffer = module.buffer.clone()
res = _stateless.functional_call(module, parameters, x)
self.assertEqual(x, res)
# check that the weights remain unmodified and were correctly accesed
cur_weight = module.l1.weight
cur_buffer = module.buffer
self.assertEqual(cur_weight, prev_weight)
self.assertEqual(cur_buffer, prev_buffer)
def test_reparametrized_module(self):
module = MockModule()
torch.nn.utils.parametrizations.spectral_norm(module.l1)
self.assertTrue('l1.parametrizations.weight.original' in dict(module.named_parameters()))
orig_sn_weight = module.l1.weight.clone()
x = torch.rand((1, 1))
parameters = {'l1.parametrizations.weight.original': torch.nn.Parameter(torch.tensor([[1.0]])),
'l1.bias': torch.tensor([0.0]),
'buffer': torch.tensor([0.0])}
res = torch.nn.utils._stateless.functional_call(module, parameters, x)
self.assertEqual(x, res)
# verify that the spectral normalization is still applied
self.assertTrue('l1.parametrizations.weight.original' in dict(module.named_parameters()))
self.assertEqual(orig_sn_weight, module.l1.weight)
if __name__ == '__main__':
run_tests()