Files
pytorch/functorch/benchmarks/operator_authoring.py
Philip Meier bc73affdad prepare removal of deprecated functionality in torch.testing (#87969)
_Redo of #86586 with all BC breaking changes granularly placed into separate commits._

---

Per title. Deprecation happened on Feb 25, 2022 in c6f1bbc0ac33be0c8ad9956e3fc15e78ddb6cb95, which made it into the 1.12 release. Since it is now 245 days later and the next release will be 1.14, the removals later in the stack comply with the [BC policy](https://github.com/pytorch/pytorch/wiki/PyTorch's-Python-Frontend-Backward-and-Forward-Compatibility-Policy#minimizing-the-disruption-of-bc-breaking-changes).
Pull Request resolved: https://github.com/pytorch/pytorch/pull/87969
Approved by: https://github.com/mruberry
2022-11-02 14:04:48 +00:00

261 lines
7.4 KiB
Python

from functools import partial
import numpy as np
import pandas as pd
import timeit
import torch
from functorch.compile import pointwise_operator
WRITE_CSV = False
CUDA = False
SIZES = [1, 512, 8192]
NUMBER = [100, 10, 1, 1]
REPEAT = 20
@pointwise_operator
def nnc_add(a, b):
return a + b
@pointwise_operator
def nnc_addnorm(a, b, mean, std):
return (a + b - mean) / std
def eager_addnorm(a, b, mean, std):
return (a + b - mean) / std
def inplace_addnorm(a, b, mean, std, out):
out = torch.add(a, b, out=out)
torch.sub(out, mean, out=out)
torch.div(out, std, out=out)
return out
ts_addnorm = torch.jit.script(eager_addnorm)
ts_ip_addnorm = torch.jit.script(inplace_addnorm)
def maybe_synced(fn):
if CUDA:
synchronize = torch.cuda.synchronize
synchronize() # warmup
def _fn():
result = fn()
synchronize()
return result
return _fn
return fn
def benchmark_loop(setup):
result = np.zeros((REPEAT, len(SIZES), 2), dtype=np.float64)
for s, n in enumerate(SIZES):
nnc, aten = setup(n)
nnc = maybe_synced(nnc)
aten = maybe_synced(aten)
for r in range(result.shape[0]):
result[r, s, 0] = timeit.timeit(nnc, number=NUMBER[s])
result[r, s, 1] = timeit.timeit(aten, number=NUMBER[s])
result = np.median(result, axis=0)
assert result.shape == (len(SIZES), 2)
result = result[:, 1] / result[:, 0]
print(result)
return result
def test(make_args, nnc=nnc_add, aten=torch.add):
def setup(n):
args = make_args(n)
result_aten = aten(*args)
result_nnc = nnc(*args)
assert result_nnc.dtype == result_aten.dtype
assert result_nnc.size() == result_aten.size()
assert result_nnc.stride() == result_aten.stride()
torch.testing.assert_close(result_aten, result_nnc)
return (lambda: nnc(*args), lambda: aten(*args))
return benchmark_loop(setup)
def test_inplace(make_args, nnc=nnc_add, aten=torch.add):
def inplace_setup(n):
a, b = make_args(n)
result_aten = torch.clone(a)
result_nnc = torch.clone(a)
nnc(result_nnc, b, out=result_nnc)
aten(result_aten, b, out=result_aten)
torch.testing.assert_close(result_aten, result_nnc)
return (lambda: nnc(a, b, out=a), lambda: aten(a, b, out=a))
return benchmark_loop(inplace_setup)
def test_out(make_args, out, nnc=nnc_add, aten=torch.add):
def out_setup(n):
args = make_args(n)
result_aten = out(n)
result_nnc = out(n)
aten(*args, out=result_aten)
nnc(*args, out=result_nnc)
torch.testing.assert_close(result_aten, result_nnc)
result = out(n)
return (lambda: nnc(*args, out=result), lambda: aten(*args, out=result))
return benchmark_loop(out_setup)
def test_backwards(make_args, nnc=nnc_add, aten=torch.add):
def backwards_setup(n):
args = make_args(n)
(grad_var,) = [a for a in args if a.requires_grad]
aten(*args).sum().backward()
correct = grad_var.grad.clone()
grad_var.grad.zero_()
nnc(*args).sum().backward()
torch.testing.assert_close(correct, grad_var.grad)
return (
lambda: nnc(*args).sum().backward(),
lambda: aten(*args).sum().backward(),
)
return benchmark_loop(backwards_setup)
def main():
torch.set_num_threads(1) # TODO(jansel): add parallel support
torch._C._jit_override_can_fuse_on_cpu(True)
device = "cuda" if CUDA else "cpu"
I = partial(torch.randint, 0, 100, device=device)
R = partial(torch.randn, device=device)
results = [
("add", test(lambda n: (R(n, n), R(n, n)))),
("broadcast1", test(lambda n: (R(n, n), R(1)))),
("broadcast2", test(lambda n: (R(n, n), R(n, 1)))),
("broadcast3", test(lambda n: (R(n, 1), R(1, n)))),
("inplace", test_inplace(lambda n: (R(n, n), R(n, 1)))),
("out=", test_out(lambda n: (R(n, n), R(n, n)), out=lambda n: R(n, n))),
("transposed1", test(lambda n: (R(n, n), R(n, n).transpose(0, 1)))),
(
"transposed2",
test(lambda n: (R(n, n).transpose(0, 1), R(n, n).transpose(0, 1))),
),
("slice1", test(lambda n: (R(n + 1, n + 1, 2)[:n, :n, 0], R(n, n)))),
("slice2", test(lambda n: (R(n, n, 2)[:, :, 0], R(n, n, 2)[:, :, 0]))),
(
"strided out",
test_out(
lambda n: (R(n, n), R(n, n)),
out=lambda n: R(n + 1, n + 1, 2)[:n, :n, 0],
),
),
(
"out convert",
test_out(
lambda n: (R(n, n), R(n, n)), out=lambda n: R(n, n, dtype=torch.float64)
),
),
("issue #57611 (n,32,32,2)", test(lambda n: (R(1, 32, 32, 2), R(n, 1, 1, 2)))),
("float+double", test(lambda n: (R(n, n), R(n, n, dtype=torch.float64)))),
(
"int+long",
test(
lambda n: (I([n, n], dtype=torch.int32), I([n, n], dtype=torch.int64))
),
),
(
"int+short",
test(
lambda n: (I([n, n], dtype=torch.int32), I([n, n], dtype=torch.int16))
),
),
(
"float+int",
test(
lambda n: (R([n, n], dtype=torch.float32), I([n, n], dtype=torch.int32))
),
),
(
"double+long",
test(
lambda n: (R([n, n], dtype=torch.float64), I([n, n], dtype=torch.int64))
),
),
(
"fused addnorm",
test(
lambda n: (R(n, n), R(n, n), R(n, n), R(n, n)),
nnc=nnc_addnorm,
aten=eager_addnorm,
),
),
(
"fused addnorm (vs TS)",
test(
lambda n: (R(n, n), R(n, n), R(n, n), R(n, n)),
nnc=nnc_addnorm,
aten=ts_addnorm,
),
),
(
"fused addnorm out=",
test_out(
lambda n: (R(n, n), R(n, n), R(n, n), R(n, n)),
nnc=nnc_addnorm,
aten=inplace_addnorm,
out=lambda n: R(n, n),
),
),
(
"fused addnorm out= (vs TS)",
test_out(
lambda n: (R(n, n), R(n, n), R(n, n), R(n, n)),
nnc=nnc_addnorm,
aten=ts_ip_addnorm,
out=lambda n: R(n, n),
),
),
(
"fused addnorm backward",
test_backwards(
lambda n: (R(n, n), R(n, n, requires_grad=True), R(n, n), R(n, n)),
nnc=nnc_addnorm,
aten=eager_addnorm,
),
),
(
"fused addnorm backward (vs TS)",
test_backwards(
lambda n: (R(n, n), R(n, n, requires_grad=True), R(n, n), R(n, n)),
nnc=nnc_addnorm,
aten=ts_addnorm,
),
),
]
df = pd.DataFrame(
np.stack([r for n, r in results]),
columns=[f"{n}x{n}".rjust(9) for n in SIZES],
index=[n for n, r in results],
)
if WRITE_CSV:
df.to_csv("../operator_authoring_results.csv")
print("wrote ../operator_authoring_results.csv")
print()
print("Speedups over aten")
pd.options.display.float_format = "{:.2f}x".format
print(df)
if __name__ == "__main__":
main()