Files
pytorch/test/test_cuda_primary_ctx.py
Xuehai Pan ba48cf6535 [BE][Easy][6/19] enforce style for empty lines in import segments in test/ (#129757)
See https://github.com/pytorch/pytorch/pull/129751#issue-2380881501. Most changes are auto-generated by linter.

You can review these PRs via:

```bash
git diff --ignore-all-space --ignore-blank-lines HEAD~1
```

Pull Request resolved: https://github.com/pytorch/pytorch/pull/129757
Approved by: https://github.com/ezyang
2024-07-17 06:42:37 +00:00

123 lines
4.2 KiB
Python

# Owner(s): ["module: cuda"]
import sys
import unittest
import torch
from torch.testing._internal.common_cuda import TEST_CUDA, TEST_MULTIGPU
from torch.testing._internal.common_utils import (
NoTest,
run_tests,
skipIfRocmVersionLessThan,
TestCase,
)
# NOTE: this needs to be run in a brand new process
if not TEST_CUDA:
print("CUDA not available, skipping tests", file=sys.stderr)
TestCase = NoTest # noqa: F811
@torch.testing._internal.common_utils.markDynamoStrictTest
class TestCudaPrimaryCtx(TestCase):
CTX_ALREADY_CREATED_ERR_MSG = (
"Tests defined in test_cuda_primary_ctx.py must be run in a process "
"where CUDA contexts are never created. Use either run_test.py or add "
"--subprocess to run each test in a different subprocess."
)
@skipIfRocmVersionLessThan((4, 4, 21504))
def setUp(self):
for device in range(torch.cuda.device_count()):
# Ensure context has not been created beforehand
self.assertFalse(
torch._C._cuda_hasPrimaryContext(device),
TestCudaPrimaryCtx.CTX_ALREADY_CREATED_ERR_MSG,
)
@unittest.skipIf(not TEST_MULTIGPU, "only one GPU detected")
def test_str_repr(self):
x = torch.randn(1, device="cuda:1")
# We should have only created context on 'cuda:1'
self.assertFalse(torch._C._cuda_hasPrimaryContext(0))
self.assertTrue(torch._C._cuda_hasPrimaryContext(1))
str(x)
repr(x)
# We should still have only created context on 'cuda:1'
self.assertFalse(torch._C._cuda_hasPrimaryContext(0))
self.assertTrue(torch._C._cuda_hasPrimaryContext(1))
@unittest.skipIf(not TEST_MULTIGPU, "only one GPU detected")
def test_copy(self):
x = torch.randn(1, device="cuda:1")
# We should have only created context on 'cuda:1'
self.assertFalse(torch._C._cuda_hasPrimaryContext(0))
self.assertTrue(torch._C._cuda_hasPrimaryContext(1))
y = torch.randn(1, device="cpu")
y.copy_(x)
# We should still have only created context on 'cuda:1'
self.assertFalse(torch._C._cuda_hasPrimaryContext(0))
self.assertTrue(torch._C._cuda_hasPrimaryContext(1))
@unittest.skipIf(not TEST_MULTIGPU, "only one GPU detected")
def test_pin_memory(self):
x = torch.randn(1, device="cuda:1")
# We should have only created context on 'cuda:1'
self.assertFalse(torch._C._cuda_hasPrimaryContext(0))
self.assertTrue(torch._C._cuda_hasPrimaryContext(1))
self.assertFalse(x.is_pinned())
# We should still have only created context on 'cuda:1'
self.assertFalse(torch._C._cuda_hasPrimaryContext(0))
self.assertTrue(torch._C._cuda_hasPrimaryContext(1))
x = torch.randn(3, device="cpu").pin_memory()
# We should still have only created context on 'cuda:1'
self.assertFalse(torch._C._cuda_hasPrimaryContext(0))
self.assertTrue(torch._C._cuda_hasPrimaryContext(1))
self.assertTrue(x.is_pinned())
# We should still have only created context on 'cuda:1'
self.assertFalse(torch._C._cuda_hasPrimaryContext(0))
self.assertTrue(torch._C._cuda_hasPrimaryContext(1))
x = torch.randn(3, device="cpu", pin_memory=True)
# We should still have only created context on 'cuda:1'
self.assertFalse(torch._C._cuda_hasPrimaryContext(0))
self.assertTrue(torch._C._cuda_hasPrimaryContext(1))
x = torch.zeros(3, device="cpu", pin_memory=True)
# We should still have only created context on 'cuda:1'
self.assertFalse(torch._C._cuda_hasPrimaryContext(0))
self.assertTrue(torch._C._cuda_hasPrimaryContext(1))
x = torch.empty(3, device="cpu", pin_memory=True)
# We should still have only created context on 'cuda:1'
self.assertFalse(torch._C._cuda_hasPrimaryContext(0))
self.assertTrue(torch._C._cuda_hasPrimaryContext(1))
x = x.pin_memory()
# We should still have only created context on 'cuda:1'
self.assertFalse(torch._C._cuda_hasPrimaryContext(0))
self.assertTrue(torch._C._cuda_hasPrimaryContext(1))
if __name__ == "__main__":
run_tests()