mirror of
https://github.com/pytorch/pytorch.git
synced 2025-10-20 21:14:14 +08:00
Fixes #129652 Pull Request resolved: https://github.com/pytorch/pytorch/pull/135331 Approved by: https://github.com/shink, https://github.com/FFFrog, https://github.com/ezyang Co-authored-by: Jiawei Li <ljw1101.vip@gmail.com>
659 lines
27 KiB
Python
659 lines
27 KiB
Python
# Owner(s): ["module: cpp-extensions"]
|
|
|
|
import _codecs
|
|
import io
|
|
import os
|
|
import tempfile
|
|
import types
|
|
import unittest
|
|
from typing import Union
|
|
from unittest.mock import patch
|
|
|
|
import numpy as np
|
|
|
|
import torch
|
|
import torch.testing._internal.common_utils as common
|
|
import torch.utils.cpp_extension
|
|
from torch.serialization import safe_globals
|
|
from torch.testing._internal.common_utils import (
|
|
IS_ARM64,
|
|
skipIfTorchDynamo,
|
|
TemporaryFileName,
|
|
TEST_CUDA,
|
|
TEST_XPU,
|
|
)
|
|
from torch.utils.cpp_extension import CUDA_HOME, ROCM_HOME
|
|
|
|
|
|
TEST_CUDA = TEST_CUDA and CUDA_HOME is not None
|
|
TEST_ROCM = TEST_CUDA and torch.version.hip is not None and ROCM_HOME is not None
|
|
|
|
|
|
def generate_faked_module():
|
|
def device_count() -> int:
|
|
return 1
|
|
|
|
def get_rng_state(device: Union[int, str, torch.device] = "foo") -> torch.Tensor:
|
|
# create a tensor using our custom device object.
|
|
return torch.empty(4, 4, device="foo")
|
|
|
|
def set_rng_state(
|
|
new_state: torch.Tensor, device: Union[int, str, torch.device] = "foo"
|
|
) -> None:
|
|
pass
|
|
|
|
def is_available():
|
|
return True
|
|
|
|
def current_device():
|
|
return 0
|
|
|
|
# create a new module to fake torch.foo dynamicaly
|
|
foo = types.ModuleType("foo")
|
|
|
|
foo.device_count = device_count
|
|
foo.get_rng_state = get_rng_state
|
|
foo.set_rng_state = set_rng_state
|
|
foo.is_available = is_available
|
|
foo.current_device = current_device
|
|
foo._lazy_init = lambda: None
|
|
foo.is_initialized = lambda: True
|
|
|
|
return foo
|
|
|
|
|
|
@unittest.skipIf(IS_ARM64, "Does not work on arm")
|
|
@unittest.skipIf(TEST_XPU, "XPU does not support cppextension currently")
|
|
@torch.testing._internal.common_utils.markDynamoStrictTest
|
|
class TestCppExtensionOpenRgistration(common.TestCase):
|
|
"""Tests Open Device Registration with C++ extensions."""
|
|
|
|
module = None
|
|
|
|
def setUp(self):
|
|
super().setUp()
|
|
|
|
# cpp extensions use relative paths. Those paths are relative to
|
|
# this file, so we'll change the working directory temporarily
|
|
self.old_working_dir = os.getcwd()
|
|
os.chdir(os.path.dirname(os.path.abspath(__file__)))
|
|
|
|
assert self.module is not None
|
|
|
|
def tearDown(self):
|
|
super().tearDown()
|
|
|
|
# return the working directory (see setUp)
|
|
os.chdir(self.old_working_dir)
|
|
|
|
@classmethod
|
|
def setUpClass(cls):
|
|
torch.testing._internal.common_utils.remove_cpp_extensions_build_root()
|
|
|
|
cls.module = torch.utils.cpp_extension.load(
|
|
name="custom_device_extension",
|
|
sources=[
|
|
"cpp_extensions/open_registration_extension.cpp",
|
|
],
|
|
extra_include_paths=["cpp_extensions"],
|
|
extra_cflags=["-g"],
|
|
verbose=True,
|
|
)
|
|
|
|
# register torch.foo module and foo device to torch
|
|
torch.utils.rename_privateuse1_backend("foo")
|
|
torch.utils.generate_methods_for_privateuse1_backend(for_storage=True)
|
|
torch._register_device_module("foo", generate_faked_module())
|
|
|
|
def test_base_device_registration(self):
|
|
self.assertFalse(self.module.custom_add_called())
|
|
# create a tensor using our custom device object
|
|
device = self.module.custom_device()
|
|
x = torch.empty(4, 4, device=device)
|
|
y = torch.empty(4, 4, device=device)
|
|
# Check that our device is correct.
|
|
self.assertTrue(x.device == device)
|
|
self.assertFalse(x.is_cpu)
|
|
self.assertFalse(self.module.custom_add_called())
|
|
# calls out custom add kernel, registered to the dispatcher
|
|
z = x + y
|
|
# check that it was called
|
|
self.assertTrue(self.module.custom_add_called())
|
|
z_cpu = z.to(device="cpu")
|
|
# Check that our cross-device copy correctly copied the data to cpu
|
|
self.assertTrue(z_cpu.is_cpu)
|
|
self.assertFalse(z.is_cpu)
|
|
self.assertTrue(z.device == device)
|
|
self.assertEqual(z, z_cpu)
|
|
|
|
def test_common_registration(self):
|
|
# check unsupported device and duplicated registration
|
|
with self.assertRaisesRegex(RuntimeError, "Expected one of cpu"):
|
|
torch._register_device_module("dev", generate_faked_module())
|
|
with self.assertRaisesRegex(RuntimeError, "The runtime module of"):
|
|
torch._register_device_module("foo", generate_faked_module())
|
|
|
|
# backend name can be renamed to the same name multiple times
|
|
torch.utils.rename_privateuse1_backend("foo")
|
|
|
|
# backend name can't be renamed multiple times to different names.
|
|
with self.assertRaisesRegex(
|
|
RuntimeError, "torch.register_privateuse1_backend()"
|
|
):
|
|
torch.utils.rename_privateuse1_backend("dev")
|
|
|
|
# generator tensor and module can be registered only once
|
|
with self.assertRaisesRegex(RuntimeError, "The custom device module of"):
|
|
torch.utils.generate_methods_for_privateuse1_backend()
|
|
|
|
# check whether torch.foo have been registered correctly
|
|
self.assertTrue(
|
|
torch.utils.backend_registration._get_custom_mod_func("device_count")() == 1
|
|
)
|
|
with self.assertRaisesRegex(RuntimeError, "Try to call torch.foo"):
|
|
torch.utils.backend_registration._get_custom_mod_func("func_name_")
|
|
|
|
# check attributes after registered
|
|
self.assertTrue(hasattr(torch.Tensor, "is_foo"))
|
|
self.assertTrue(hasattr(torch.Tensor, "foo"))
|
|
self.assertTrue(hasattr(torch.TypedStorage, "is_foo"))
|
|
self.assertTrue(hasattr(torch.TypedStorage, "foo"))
|
|
self.assertTrue(hasattr(torch.UntypedStorage, "is_foo"))
|
|
self.assertTrue(hasattr(torch.UntypedStorage, "foo"))
|
|
self.assertTrue(hasattr(torch.nn.Module, "foo"))
|
|
self.assertTrue(hasattr(torch.nn.utils.rnn.PackedSequence, "is_foo"))
|
|
self.assertTrue(hasattr(torch.nn.utils.rnn.PackedSequence, "foo"))
|
|
|
|
def test_open_device_generator_registration_and_hooks(self):
|
|
device = self.module.custom_device()
|
|
# None of our CPU operations should call the custom add function.
|
|
self.assertFalse(self.module.custom_add_called())
|
|
|
|
# check generator registered before using
|
|
with self.assertRaisesRegex(
|
|
RuntimeError,
|
|
"Please register a generator to the PrivateUse1 dispatch key",
|
|
):
|
|
torch.Generator(device=device)
|
|
|
|
self.module.register_generator_first()
|
|
gen = torch.Generator(device=device)
|
|
self.assertTrue(gen.device == device)
|
|
|
|
# generator can be registered only once
|
|
with self.assertRaisesRegex(
|
|
RuntimeError,
|
|
"Only can register a generator to the PrivateUse1 dispatch key once",
|
|
):
|
|
self.module.register_generator_second()
|
|
|
|
if self.module.is_register_hook() is False:
|
|
self.module.register_hook()
|
|
default_gen = self.module.default_generator(0)
|
|
self.assertTrue(
|
|
default_gen.device.type == torch._C._get_privateuse1_backend_name()
|
|
)
|
|
|
|
def test_open_device_dispatchstub(self):
|
|
# test kernels could be reused by privateuse1 backend through dispatchstub
|
|
input_data = torch.randn(2, 2, 3, dtype=torch.float32, device="cpu")
|
|
foo_input_data = input_data.to("foo")
|
|
output_data = torch.abs(input_data)
|
|
foo_output_data = torch.abs(foo_input_data)
|
|
self.assertEqual(output_data, foo_output_data.cpu())
|
|
|
|
output_data = torch.randn(2, 2, 6, dtype=torch.float32, device="cpu")
|
|
# output operand will resize flag is True in TensorIterator.
|
|
foo_input_data = input_data.to("foo")
|
|
foo_output_data = output_data.to("foo")
|
|
# output operand will resize flag is False in TensorIterator.
|
|
torch.abs(input_data, out=output_data[:, :, 0:6:2])
|
|
torch.abs(foo_input_data, out=foo_output_data[:, :, 0:6:2])
|
|
self.assertEqual(output_data, foo_output_data.cpu())
|
|
|
|
# output operand will resize flag is True in TensorIterator.
|
|
# and convert output to contiguous tensor in TensorIterator.
|
|
output_data = torch.randn(2, 2, 6, dtype=torch.float32, device="cpu")
|
|
foo_input_data = input_data.to("foo")
|
|
foo_output_data = output_data.to("foo")
|
|
torch.abs(input_data, out=output_data[:, :, 0:6:3])
|
|
torch.abs(foo_input_data, out=foo_output_data[:, :, 0:6:3])
|
|
self.assertEqual(output_data, foo_output_data.cpu())
|
|
|
|
def test_open_device_quantized(self):
|
|
input_data = torch.randn(3, 4, 5, dtype=torch.float32, device="cpu").to("foo")
|
|
quantized_tensor = torch.quantize_per_tensor(input_data, 0.1, 10, torch.qint8)
|
|
self.assertEqual(quantized_tensor.device, torch.device("foo:0"))
|
|
self.assertEqual(quantized_tensor.dtype, torch.qint8)
|
|
|
|
def test_open_device_random(self):
|
|
# check if torch.foo have implemented get_rng_state
|
|
with torch.random.fork_rng(device_type="foo"):
|
|
pass
|
|
|
|
def test_open_device_tensor(self):
|
|
device = self.module.custom_device()
|
|
|
|
# check whether print tensor.type() meets the expectation
|
|
dtypes = {
|
|
torch.bool: "torch.foo.BoolTensor",
|
|
torch.double: "torch.foo.DoubleTensor",
|
|
torch.float32: "torch.foo.FloatTensor",
|
|
torch.half: "torch.foo.HalfTensor",
|
|
torch.int32: "torch.foo.IntTensor",
|
|
torch.int64: "torch.foo.LongTensor",
|
|
torch.int8: "torch.foo.CharTensor",
|
|
torch.short: "torch.foo.ShortTensor",
|
|
torch.uint8: "torch.foo.ByteTensor",
|
|
}
|
|
for tt, dt in dtypes.items():
|
|
test_tensor = torch.empty(4, 4, dtype=tt, device=device)
|
|
self.assertTrue(test_tensor.type() == dt)
|
|
|
|
# check whether the attributes and methods of the corresponding custom backend are generated correctly
|
|
x = torch.empty(4, 4)
|
|
self.assertFalse(x.is_foo)
|
|
|
|
x = x.foo(torch.device("foo"))
|
|
self.assertFalse(self.module.custom_add_called())
|
|
self.assertTrue(x.is_foo)
|
|
|
|
# test different device type input
|
|
y = torch.empty(4, 4)
|
|
self.assertFalse(y.is_foo)
|
|
|
|
y = y.foo(torch.device("foo:0"))
|
|
self.assertFalse(self.module.custom_add_called())
|
|
self.assertTrue(y.is_foo)
|
|
|
|
# test different device type input
|
|
z = torch.empty(4, 4)
|
|
self.assertFalse(z.is_foo)
|
|
|
|
z = z.foo(0)
|
|
self.assertFalse(self.module.custom_add_called())
|
|
self.assertTrue(z.is_foo)
|
|
|
|
def test_open_device_packed_sequence(self):
|
|
device = self.module.custom_device()
|
|
a = torch.rand(5, 3)
|
|
b = torch.tensor([1, 1, 1, 1, 1])
|
|
input = torch.nn.utils.rnn.PackedSequence(a, b)
|
|
self.assertFalse(input.is_foo)
|
|
input_foo = input.foo()
|
|
self.assertTrue(input_foo.is_foo)
|
|
|
|
def test_open_device_storage(self):
|
|
# check whether the attributes and methods for storage of the corresponding custom backend are generated correctly
|
|
x = torch.empty(4, 4)
|
|
z1 = x.storage()
|
|
self.assertFalse(z1.is_foo)
|
|
|
|
z1 = z1.foo()
|
|
self.assertFalse(self.module.custom_add_called())
|
|
self.assertTrue(z1.is_foo)
|
|
|
|
with self.assertRaisesRegex(RuntimeError, "Invalid device"):
|
|
z1.foo(torch.device("cpu"))
|
|
|
|
z1 = z1.cpu()
|
|
self.assertFalse(self.module.custom_add_called())
|
|
self.assertFalse(z1.is_foo)
|
|
|
|
z1 = z1.foo(device="foo:0", non_blocking=False)
|
|
self.assertFalse(self.module.custom_add_called())
|
|
self.assertTrue(z1.is_foo)
|
|
|
|
with self.assertRaisesRegex(RuntimeError, "Invalid device"):
|
|
z1.foo(device="cuda:0", non_blocking=False)
|
|
|
|
# check UntypedStorage
|
|
y = torch.empty(4, 4)
|
|
z2 = y.untyped_storage()
|
|
self.assertFalse(z2.is_foo)
|
|
|
|
z2 = z2.foo()
|
|
self.assertFalse(self.module.custom_add_called())
|
|
self.assertTrue(z2.is_foo)
|
|
|
|
# check custom StorageImpl create
|
|
self.module.custom_storage_registry()
|
|
|
|
z3 = y.untyped_storage()
|
|
self.assertFalse(self.module.custom_storageImpl_called())
|
|
|
|
z3 = z3.foo()
|
|
self.assertTrue(self.module.custom_storageImpl_called())
|
|
self.assertFalse(self.module.custom_storageImpl_called())
|
|
|
|
z3 = z3[0:3]
|
|
self.assertTrue(self.module.custom_storageImpl_called())
|
|
|
|
@skipIfTorchDynamo("unsupported aten.is_pinned.default")
|
|
def test_open_device_storage_pin_memory(self):
|
|
# Check if the pin_memory is functioning properly on custom device
|
|
cpu_tensor = torch.empty(3)
|
|
self.assertFalse(cpu_tensor.is_foo)
|
|
self.assertFalse(cpu_tensor.is_pinned("foo"))
|
|
|
|
cpu_tensor_pin = cpu_tensor.pin_memory("foo")
|
|
self.assertTrue(cpu_tensor_pin.is_pinned("foo"))
|
|
|
|
# Test storage pin_memory and is_pin
|
|
cpu_storage = cpu_tensor.storage()
|
|
# We implement a dummy pin_memory of no practical significance
|
|
# for custom device. Once tensor.pin_memory() has been called,
|
|
# then tensor.is_pinned() will always return true no matter
|
|
# what tensor it's called on.
|
|
self.assertTrue(cpu_storage.is_pinned("foo"))
|
|
|
|
cpu_storage_pinned = cpu_storage.pin_memory("foo")
|
|
self.assertTrue(cpu_storage_pinned.is_pinned("foo"))
|
|
|
|
# Test untyped storage pin_memory and is_pin
|
|
cpu_tensor = torch.randn([3, 2, 1, 4])
|
|
cpu_untyped_storage = cpu_tensor.untyped_storage()
|
|
self.assertTrue(cpu_untyped_storage.is_pinned("foo"))
|
|
|
|
cpu_untyped_storage_pinned = cpu_untyped_storage.pin_memory("foo")
|
|
self.assertTrue(cpu_untyped_storage_pinned.is_pinned("foo"))
|
|
|
|
@unittest.skip(
|
|
"Temporarily disable due to the tiny differences between clang++ and g++ in defining static variable in inline function"
|
|
)
|
|
def test_open_device_serialization(self):
|
|
self.module.set_custom_device_index(-1)
|
|
storage = torch.UntypedStorage(4, device=torch.device("foo"))
|
|
self.assertEqual(torch.serialization.location_tag(storage), "foo")
|
|
|
|
self.module.set_custom_device_index(0)
|
|
storage = torch.UntypedStorage(4, device=torch.device("foo"))
|
|
self.assertEqual(torch.serialization.location_tag(storage), "foo:0")
|
|
|
|
cpu_storage = torch.empty(4, 4).storage()
|
|
foo_storage = torch.serialization.default_restore_location(cpu_storage, "foo:0")
|
|
self.assertTrue(foo_storage.is_foo)
|
|
|
|
# test tensor MetaData serialization
|
|
x = torch.empty(4, 4).long()
|
|
y = x.foo()
|
|
self.assertFalse(self.module.check_backend_meta(y))
|
|
self.module.custom_set_backend_meta(y)
|
|
self.assertTrue(self.module.check_backend_meta(y))
|
|
|
|
self.module.custom_serialization_registry()
|
|
with tempfile.TemporaryDirectory() as tmpdir:
|
|
path = os.path.join(tmpdir, "data.pt")
|
|
torch.save(y, path)
|
|
z1 = torch.load(path)
|
|
# loads correctly onto the foo backend device
|
|
self.assertTrue(z1.is_foo)
|
|
# loads BackendMeta data correctly
|
|
self.assertTrue(self.module.check_backend_meta(z1))
|
|
|
|
# cross-backend
|
|
z2 = torch.load(path, map_location="cpu")
|
|
# loads correctly onto the cpu backend device
|
|
self.assertFalse(z2.is_foo)
|
|
# loads BackendMeta data correctly
|
|
self.assertFalse(self.module.check_backend_meta(z2))
|
|
|
|
def test_open_device_storage_resize(self):
|
|
cpu_tensor = torch.randn([8])
|
|
foo_tensor = cpu_tensor.foo()
|
|
foo_storage = foo_tensor.storage()
|
|
self.assertTrue(foo_storage.size() == 8)
|
|
|
|
# Only register tensor resize_ function.
|
|
foo_tensor.resize_(8)
|
|
self.assertTrue(foo_storage.size() == 8)
|
|
|
|
with self.assertRaisesRegex(TypeError, "Overflow"):
|
|
foo_tensor.resize_(8**29)
|
|
|
|
def test_open_device_storage_type(self):
|
|
# test cpu float storage
|
|
cpu_tensor = torch.randn([8]).float()
|
|
cpu_storage = cpu_tensor.storage()
|
|
self.assertEqual(cpu_storage.type(), "torch.FloatStorage")
|
|
|
|
# test custom float storage before defining FloatStorage
|
|
foo_tensor = cpu_tensor.foo()
|
|
foo_storage = foo_tensor.storage()
|
|
self.assertEqual(foo_storage.type(), "torch.storage.TypedStorage")
|
|
|
|
class CustomFloatStorage:
|
|
@property
|
|
def __module__(self):
|
|
return "torch." + torch._C._get_privateuse1_backend_name()
|
|
|
|
@property
|
|
def __name__(self):
|
|
return "FloatStorage"
|
|
|
|
# test custom float storage after defining FloatStorage
|
|
try:
|
|
torch.foo.FloatStorage = CustomFloatStorage()
|
|
self.assertEqual(foo_storage.type(), "torch.foo.FloatStorage")
|
|
|
|
# test custom int storage after defining FloatStorage
|
|
foo_tensor2 = torch.randn([8]).int().foo()
|
|
foo_storage2 = foo_tensor2.storage()
|
|
self.assertEqual(foo_storage2.type(), "torch.storage.TypedStorage")
|
|
finally:
|
|
torch.foo.FloatStorage = None
|
|
|
|
def test_open_device_faketensor(self):
|
|
with torch._subclasses.fake_tensor.FakeTensorMode.push():
|
|
a = torch.empty(1, device="foo")
|
|
b = torch.empty(1, device="foo:0")
|
|
result = a + b
|
|
|
|
def test_open_device_named_tensor(self):
|
|
torch.empty([2, 3, 4, 5], device="foo", names=["N", "C", "H", "W"])
|
|
|
|
# Not an open registration test - this file is just very convenient
|
|
# for testing torch.compile on custom C++ operators
|
|
def test_compile_autograd_function_returns_self(self):
|
|
x_ref = torch.randn(4, requires_grad=True)
|
|
out_ref = self.module.custom_autograd_fn_returns_self(x_ref)
|
|
out_ref.sum().backward()
|
|
|
|
x_test = x_ref.detach().clone().requires_grad_(True)
|
|
f_compiled = torch.compile(self.module.custom_autograd_fn_returns_self)
|
|
out_test = f_compiled(x_test)
|
|
out_test.sum().backward()
|
|
|
|
self.assertEqual(out_ref, out_test)
|
|
self.assertEqual(x_ref.grad, x_test.grad)
|
|
|
|
# Not an open registration test - this file is just very convenient
|
|
# for testing torch.compile on custom C++ operators
|
|
@skipIfTorchDynamo("Temporary disabled due to torch._ops.OpOverloadPacket")
|
|
def test_compile_autograd_function_aliasing(self):
|
|
x_ref = torch.randn(4, requires_grad=True)
|
|
out_ref = torch.ops._test_funcs.custom_autograd_fn_aliasing(x_ref)
|
|
out_ref.sum().backward()
|
|
|
|
x_test = x_ref.detach().clone().requires_grad_(True)
|
|
f_compiled = torch.compile(torch.ops._test_funcs.custom_autograd_fn_aliasing)
|
|
out_test = f_compiled(x_test)
|
|
out_test.sum().backward()
|
|
|
|
self.assertEqual(out_ref, out_test)
|
|
self.assertEqual(x_ref.grad, x_test.grad)
|
|
|
|
def test_open_device_scalar_type_fallback(self):
|
|
z_cpu = torch.Tensor([[0, 0, 0, 1, 1, 2], [0, 1, 2, 1, 2, 2]]).to(torch.int64)
|
|
z = torch.triu_indices(3, 3, device="foo")
|
|
self.assertEqual(z_cpu, z)
|
|
|
|
def test_open_device_tensor_type_fallback(self):
|
|
# create tensors located in custom device
|
|
x = torch.Tensor([[1, 2, 3], [2, 3, 4]]).to("foo")
|
|
y = torch.Tensor([1, 0, 2]).to("foo")
|
|
# create result tensor located in cpu
|
|
z_cpu = torch.Tensor([[0, 2, 1], [1, 3, 2]])
|
|
# Check that our device is correct.
|
|
device = self.module.custom_device()
|
|
self.assertTrue(x.device == device)
|
|
self.assertFalse(x.is_cpu)
|
|
|
|
# call sub op, which will fallback to cpu
|
|
z = torch.sub(x, y)
|
|
self.assertEqual(z_cpu, z)
|
|
|
|
# call index op, which will fallback to cpu
|
|
z_cpu = torch.Tensor([3, 1])
|
|
y = torch.Tensor([1, 0]).long().to("foo")
|
|
z = x[y, y]
|
|
self.assertEqual(z_cpu, z)
|
|
|
|
def test_open_device_tensorlist_type_fallback(self):
|
|
# create tensors located in custom device
|
|
v_foo = torch.Tensor([1, 2, 3]).to("foo")
|
|
# create result tensor located in cpu
|
|
z_cpu = torch.Tensor([2, 4, 6])
|
|
# create tensorlist for foreach_add op
|
|
x = (v_foo, v_foo)
|
|
y = (v_foo, v_foo)
|
|
# Check that our device is correct.
|
|
device = self.module.custom_device()
|
|
self.assertTrue(v_foo.device == device)
|
|
self.assertFalse(v_foo.is_cpu)
|
|
|
|
# call _foreach_add op, which will fallback to cpu
|
|
z = torch._foreach_add(x, y)
|
|
self.assertEqual(z_cpu, z[0])
|
|
self.assertEqual(z_cpu, z[1])
|
|
|
|
# call _fused_adamw_ with undefined tensor.
|
|
self.module.fallback_with_undefined_tensor()
|
|
|
|
@unittest.skipIf(
|
|
np.__version__ < "1.25",
|
|
"versions < 1.25 serialize dtypes differently from how it's serialized in data_legacy_numpy",
|
|
)
|
|
def test_open_device_numpy_serialization(self):
|
|
"""
|
|
This tests the legacy _rebuild_device_tensor_from_numpy serialization path
|
|
"""
|
|
torch.utils.rename_privateuse1_backend("foo")
|
|
device = self.module.custom_device()
|
|
default_protocol = torch.serialization.DEFAULT_PROTOCOL
|
|
|
|
# Legacy data saved with _rebuild_device_tensor_from_numpy on f80ed0b8 via
|
|
|
|
# with patch.object(torch._C, "_has_storage", return_value=False):
|
|
# x = torch.tensor([[1, 2, 3], [4, 5, 6]], dtype=torch.float32, device=device)
|
|
# x_foo = x.to(device)
|
|
# sd = {"x": x_foo}
|
|
# rebuild_func = x_foo._reduce_ex_internal(default_protocol)[0]
|
|
# self.assertTrue(
|
|
# rebuild_func is torch._utils._rebuild_device_tensor_from_numpy
|
|
# )
|
|
# with open("foo.pt", "wb") as f:
|
|
# torch.save(sd, f)
|
|
|
|
data_legacy_numpy = (
|
|
b"PK\x03\x04\x00\x00\x08\x08\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00"
|
|
b"\x00\x00\x00\x10\x00\x12\x00archive/data.pklFB\x0e\x00ZZZZZZZZZZZZZZ\x80\x02}q\x00X\x01"
|
|
b"\x00\x00\x00xq\x01ctorch._utils\n_rebuild_device_tensor_from_numpy\nq\x02(cnumpy.core.m"
|
|
b"ultiarray\n_reconstruct\nq\x03cnumpy\nndarray\nq\x04K\x00\x85q\x05c_codecs\nencode\nq\x06"
|
|
b"X\x01\x00\x00\x00bq\x07X\x06\x00\x00\x00latin1q\x08\x86q\tRq\n\x87q\x0bRq\x0c(K\x01K\x02K"
|
|
b"\x03\x86q\rcnumpy\ndtype\nq\x0eX\x02\x00\x00\x00f4q\x0f\x89\x88\x87q\x10Rq\x11(K\x03X\x01"
|
|
b"\x00\x00\x00<q\x12NNNJ\xff\xff\xff\xffJ\xff\xff\xff\xffK\x00tq\x13b\x89h\x06X\x1c\x00\x00"
|
|
b"\x00\x00\x00\xc2\x80?\x00\x00\x00@\x00\x00@@\x00\x00\xc2\x80@\x00\x00\xc2\xa0@\x00\x00\xc3"
|
|
b"\x80@q\x14h\x08\x86q\x15Rq\x16tq\x17bctorch\nfloat32\nq\x18X\x05\x00\x00\x00foo:0q\x19\x89"
|
|
b"tq\x1aRq\x1bs.PK\x07\x08\xe3\xe4\x86\xecO\x01\x00\x00O\x01\x00\x00PK\x03\x04\x00\x00\x08"
|
|
b"\x08\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x11\x002\x00"
|
|
b"archive/byteorderFB.\x00ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZlittlePK\x07\x08"
|
|
b"\x85=\xe3\x19\x06\x00\x00\x00\x06\x00\x00\x00PK\x03\x04\x00\x00\x08\x08\x00\x00\x00\x00"
|
|
b"\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x0f\x00=\x00archive/versionFB9\x00"
|
|
b"ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ3\nPK\x07\x08\xd1\x9egU\x02\x00\x00"
|
|
b"\x00\x02\x00\x00\x00PK\x03\x04\x00\x00\x08\x08\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00"
|
|
b"\x00\x00\x00\x00\x00\x00\x00\x1e\x002\x00archive/.data/serialization_idFB.\x00ZZZZZZZZZZZZZ"
|
|
b"ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ0636457737946401051300000027264370494161PK\x07\x08\x91\xbf"
|
|
b"\xa7\x0c(\x00\x00\x00(\x00\x00\x00PK\x01\x02\x00\x00\x00\x00\x08\x08\x00\x00\x00\x00\x00\x00"
|
|
b"\xe3\xe4\x86\xecO\x01\x00\x00O\x01\x00\x00\x10\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00"
|
|
b"\x00\x00\x00\x00\x00\x00archive/data.pklPK\x01\x02\x00\x00\x00\x00\x08\x08\x00\x00\x00\x00"
|
|
b"\x00\x00\x85=\xe3\x19\x06\x00\x00\x00\x06\x00\x00\x00\x11\x00\x00\x00\x00\x00\x00\x00\x00"
|
|
b"\x00\x00\x00\x00\x00\x9f\x01\x00\x00archive/byteorderPK\x01\x02\x00\x00\x00\x00\x08\x08\x00"
|
|
b"\x00\x00\x00\x00\x00\xd1\x9egU\x02\x00\x00\x00\x02\x00\x00\x00\x0f\x00\x00\x00\x00\x00\x00"
|
|
b"\x00\x00\x00\x00\x00\x00\x00\x16\x02\x00\x00archive/versionPK\x01\x02\x00\x00\x00\x00\x08"
|
|
b"\x08\x00\x00\x00\x00\x00\x00\x91\xbf\xa7\x0c(\x00\x00\x00(\x00\x00\x00\x1e\x00\x00\x00\x00"
|
|
b"\x00\x00\x00\x00\x00\x00\x00\x00\x00\x92\x02\x00\x00archive/.data/serialization_idPK\x06"
|
|
b"\x06,\x00\x00\x00\x00\x00\x00\x00\x1e\x03-\x00\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00\x00"
|
|
b"\x00\x00\x00\x00\x00\x04\x00\x00\x00\x00\x00\x00\x00\x06\x01\x00\x00\x00\x00\x00\x008\x03\x00"
|
|
b"\x00\x00\x00\x00\x00PK\x06\x07\x00\x00\x00\x00>\x04\x00\x00\x00\x00\x00\x00\x01\x00\x00\x00"
|
|
b"PK\x05\x06\x00\x00\x00\x00\x04\x00\x04\x00\x06\x01\x00\x008\x03\x00\x00\x00\x00"
|
|
)
|
|
buf_data_legacy_numpy = io.BytesIO(data_legacy_numpy)
|
|
|
|
with safe_globals(
|
|
[
|
|
np.core.multiarray._reconstruct,
|
|
np.ndarray,
|
|
np.dtype,
|
|
_codecs.encode,
|
|
np.dtypes.Float32DType,
|
|
]
|
|
):
|
|
sd_loaded = torch.load(buf_data_legacy_numpy, weights_only=True)
|
|
buf_data_legacy_numpy.seek(0)
|
|
# Test map_location
|
|
sd_loaded_cpu = torch.load(
|
|
buf_data_legacy_numpy, weights_only=True, map_location="cpu"
|
|
)
|
|
expected = torch.tensor(
|
|
[[1, 2, 3], [4, 5, 6]], dtype=torch.float32, device=device
|
|
)
|
|
self.assertEqual(sd_loaded["x"].cpu(), expected.cpu())
|
|
self.assertFalse(sd_loaded["x"].is_cpu)
|
|
self.assertTrue(sd_loaded_cpu["x"].is_cpu)
|
|
|
|
def test_open_device_cpu_serialization(self):
|
|
torch.utils.rename_privateuse1_backend("foo")
|
|
device = self.module.custom_device()
|
|
default_protocol = torch.serialization.DEFAULT_PROTOCOL
|
|
|
|
with patch.object(torch._C, "_has_storage", return_value=False):
|
|
x = torch.randn(2, 3)
|
|
x_foo = x.to(device)
|
|
sd = {"x": x_foo}
|
|
rebuild_func = x_foo._reduce_ex_internal(default_protocol)[0]
|
|
self.assertTrue(
|
|
rebuild_func is torch._utils._rebuild_device_tensor_from_cpu_tensor
|
|
)
|
|
# Test map_location
|
|
with TemporaryFileName() as f:
|
|
torch.save(sd, f)
|
|
sd_loaded = torch.load(f, weights_only=True)
|
|
# Test map_location
|
|
sd_loaded_cpu = torch.load(f, weights_only=True, map_location="cpu")
|
|
self.assertFalse(sd_loaded["x"].is_cpu)
|
|
self.assertEqual(sd_loaded["x"].cpu(), x)
|
|
self.assertTrue(sd_loaded_cpu["x"].is_cpu)
|
|
|
|
# Test metadata_only
|
|
with TemporaryFileName() as f:
|
|
with self.assertRaisesRegex(
|
|
RuntimeError,
|
|
"Cannot serialize tensors on backends with no storage under skip_data context manager",
|
|
):
|
|
with torch.serialization.skip_data():
|
|
torch.save(sd, f)
|
|
|
|
def test_open_device_dlpack(self):
|
|
t = torch.randn(2, 3).to("foo")
|
|
capsule = torch.utils.dlpack.to_dlpack(t)
|
|
t1 = torch.from_dlpack(capsule)
|
|
self.assertTrue(t1.device == t.device)
|
|
t = t.to("cpu")
|
|
t1 = t1.to("cpu")
|
|
self.assertEqual(t, t1)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
common.run_tests()
|