Files
pytorch/caffe2/core/blob_serialization.h
2016-08-01 20:58:46 -07:00

489 lines
15 KiB
C++

#ifndef CAFFE2_CORE_BLOB_SERIALIZATION_H_
#define CAFFE2_CORE_BLOB_SERIALIZATION_H_
#include <limits>
#include <future>
#include <google/protobuf/repeated_field.h>
#include "caffe2/core/blob.h"
#include "caffe2/core/blob_serializer_base.h"
#include "caffe2/core/tensor.h"
#include "caffe2/core/typeid.h"
#include "caffe2/core/types.h"
CAFFE2_DECLARE_int(caffe2_tensor_chunk_size);
namespace caffe2 {
constexpr auto kTensorBlobType = "Tensor";
// The Blob serialization registry and serializer creator functions.
CAFFE_DECLARE_TYPED_REGISTRY(
BlobSerializerRegistry,
CaffeTypeId,
BlobSerializerBase);
#define REGISTER_BLOB_SERIALIZER(id, ...) \
CAFFE_REGISTER_TYPED_CLASS(BlobSerializerRegistry, id, __VA_ARGS__)
// Creates an operator with the given operator definition.
inline unique_ptr<BlobSerializerBase> CreateSerializer(CaffeTypeId id) {
return BlobSerializerRegistry()->Create(id);
}
/**
* @brief TensorSerializer is the serializer for Tensors.
*
* TensorSerializer takes in a blob that contains a Tensor, and serializes it
* into a TensorProto protocol buffer.
*/
template <class Context>
class TensorSerializer : public BlobSerializerBase {
public:
TensorSerializer() : context_() {}
~TensorSerializer() {}
/**
* Serializes a Blob. Note that this blob has to contain Tensor<Context>,
* otherwise this function produces a fatal error.
*/
void Serialize(
const Blob& blob,
const string& name,
SerializationAcceptor acceptor) override;
void Serialize(const Tensor<Context>& tensor, const string& name,
TensorProto* proto, size_t chunkBegin, int32_t chunkSize);
private:
// A utility function to store the device context detauls.
void StoreDeviceDetail(const Tensor<Context>& input, TensorProto* proto);
Context context_;
};
/**
* @brief BlobDeserializerBase is an abstract class that deserializes a blob
* from a BlobProto or a TensorProto.
*/
class BlobDeserializerBase {
public:
virtual ~BlobDeserializerBase() {}
// Deserializes from a BlobProto object.
virtual bool Deserialize(const BlobProto& proto, Blob* blob) = 0;
};
CAFFE_DECLARE_REGISTRY(BlobDeserializerRegistry, BlobDeserializerBase);
#define REGISTER_BLOB_DESERIALIZER(name, ...) \
CAFFE_REGISTER_CLASS(BlobDeserializerRegistry, name, __VA_ARGS__)
// Creates an operator with the given operator definition.
inline unique_ptr<BlobDeserializerBase> CreateDeserializer(const string& type) {
return BlobDeserializerRegistry()->Create(type);
}
/**
* @brief TensorDeserializer is the deserializer for Tensors.
*
* The device that the deserialized Tensor will live under is determined by the
* device_detail field. If you want to specify the device of the deserialized
* tensor, change the TensorProto's corresponding fields before calling
* Deserialize.
*/
template <class Context>
class TensorDeserializer : public BlobDeserializerBase {
public:
bool Deserialize(const BlobProto& proto, Blob* blob) override;
bool Deserialize(const TensorProto& proto, Tensor<Context>* tensor);
};
////////////////////////////////////////////////////////////////////////////////
// Implementations
////////////////////////////////////////////////////////////////////////////////
namespace detail {
template <typename SrcType, typename DstType, class Context>
inline void CopyToProtoAsIs(
const size_t size,
const SrcType* src,
google::protobuf::RepeatedField<DstType>* field,
Context* context) {
static_assert(
sizeof(SrcType) == sizeof(DstType),
"The source type and dest type cannot be copied as-is. Did "
"you mean CopyToProtoWithCast?");
field->Reserve(size);
for (int i = 0; i < size; ++i) {
field->Add(0);
}
context->template Copy<SrcType, Context, CPUContext>(
size, src, reinterpret_cast<SrcType*>(field->mutable_data()));
// Make sure that we finish the copy into the protobuf.
context->FinishDeviceComputation();
}
template <typename SrcType, typename DstType, class Context>
inline void CopyToProtoWithCast(
const size_t size,
const SrcType* src,
google::protobuf::RepeatedField<DstType>* field,
Context* context) {
// TODO: we are having one unnecessary copy here if the context is already
// CPUContext. Remove it if it is performance critical.
unique_ptr<SrcType[]> buffer(new SrcType[size]);
context->template Copy<SrcType, Context, CPUContext>(
size, src, buffer.get());
context->FinishDeviceComputation();
field->Reserve(size);
for (int i = 0; i < size; ++i) {
field->Add(static_cast<DstType>(buffer[i]));
}
}
template <typename SrcType, typename DstType, class Context>
inline void CopyFromProtoAsIs(
const size_t size,
const google::protobuf::RepeatedField<SrcType>& field,
DstType* dst,
Context* context) {
static_assert(
sizeof(SrcType) == sizeof(DstType),
"The source type and dest type cannot be copied as-is. Did "
"you mean CopyFromProtoWithCast?");
CHECK_EQ(size, field.size()) << "Incorrect proto field size.";
context->template Copy<DstType, CPUContext, Context>(
size, reinterpret_cast<const DstType*>(field.data()), dst);
}
template <typename SrcType, typename DstType, class Context>
inline void CopyFromProtoWithCast(
const size_t size,
const google::protobuf::RepeatedField<SrcType>& field,
DstType* dst,
Context* context) {
CHECK_EQ(size, field.size()) << "Incorrect proto field size.";
// TODO: we are having one unnecessary copy here if the context is already
// CPUContext. Remove it if it is performance critical.
unique_ptr<DstType[]> buffer(new DstType[size]);
const SrcType* src = field.data();
for (int i = 0; i < size; ++i) {
buffer[i] = static_cast<DstType>(src[i]);
}
context->template Copy<DstType, CPUContext, Context>(size, buffer.get(), dst);
}
} // namespace detail
template <class Context>
void TensorSerializer<Context>::Serialize(
const Blob& blob,
const string& name,
BlobSerializerBase::SerializationAcceptor acceptor) {
CHECK(blob.IsType<Tensor<Context>>());
const auto& tensor = blob.template Get<Tensor<Context>>();
#ifndef __ANDROID__
std::vector<std::future<void>> futures;
#endif
for (size_t chunkBegin = 0; chunkBegin < tensor.size();
chunkBegin += FLAGS_caffe2_tensor_chunk_size) {
auto task = [&](size_t chunkBegin) {
BlobProto blob_proto;
blob_proto.set_name(name);
blob_proto.set_type(kTensorBlobType);
TensorProto& proto = *blob_proto.mutable_tensor();
proto.set_name(name);
this->Serialize(
tensor,
name,
blob_proto.mutable_tensor(),
chunkBegin,
FLAGS_caffe2_tensor_chunk_size);
acceptor(name, blob_proto.SerializeAsString());
};
#ifndef __ANDROID__
if (tensor.size() > FLAGS_caffe2_tensor_chunk_size) {
futures.emplace_back(std::async(std::launch::async, task, chunkBegin));
} else {
// Sync mode for small tensors
task(chunkBegin);
}
#else
// Since Android does not have std::future, we will always do sync mode
//
task(chunkBegin);
#endif
}
#ifndef __ANDROID__
for (auto& fut : futures) {
fut.get();
}
#endif
}
template <class Context>
void TensorSerializer<Context>::Serialize(
const Tensor<Context>& input, const string& name,
TensorProto* proto_ptr, size_t chunkBegin, int32_t chunkSize) {
CAFFE_ENFORCE(
chunkBegin < input.size(),
"Chunk begin is out of tensor: ",
chunkBegin,
' ',
input.size());
if (chunkBegin + chunkSize > input.size()) {
chunkSize = input.size() - chunkBegin;
}
TensorProto& proto = *proto_ptr;
proto.mutable_segment()->set_begin(chunkBegin);
proto.mutable_segment()->set_end(chunkBegin + chunkSize);
for (int i = 0; i < input.ndim(); ++i) {
proto.add_dims(input.dim(i));
}
const TensorProto::DataType data_type = TypeMetaToDataType(input.meta());
proto.set_data_type(data_type);
// A lot of copypaste is error prone. Should we create a macro for this?
switch (data_type) {
case TensorProto_DataType_FLOAT:
detail::CopyToProtoAsIs(
chunkSize,
input.template data<float>() + chunkBegin,
proto.mutable_float_data(),
&this->context_);
break;
case TensorProto_DataType_INT32:
detail::CopyToProtoAsIs(
chunkSize,
input.template data<int>() + chunkBegin,
proto.mutable_int32_data(),
&this->context_);
break;
case TensorProto_DataType_BYTE:
LOG(FATAL) << "This should not happen. When serializing, "
"BYTE is deprecated and moved to UINT8.";
break;
case TensorProto_DataType_STRING:
{
proto.mutable_string_data()->Reserve(chunkSize);
const string* content = input.template data<string>();
for (int i = chunkBegin; i < chunkBegin + chunkSize; ++i) {
proto.add_string_data(content[i]);
}
break;
}
case TensorProto_DataType_BOOL:
detail::CopyToProtoWithCast(
chunkSize,
input.template data<bool>() + chunkBegin,
proto.mutable_int32_data(),
&this->context_);
break;
case TensorProto_DataType_UINT8:
detail::CopyToProtoWithCast(
chunkSize,
input.template data<uint8_t>() + chunkBegin,
proto.mutable_int32_data(),
&this->context_);
break;
case TensorProto_DataType_INT8:
detail::CopyToProtoWithCast(
chunkSize,
input.template data<int8_t>() + chunkBegin,
proto.mutable_int32_data(),
&this->context_);
break;
case TensorProto_DataType_UINT16:
detail::CopyToProtoWithCast(
chunkSize,
input.template data<uint16_t>() + chunkBegin,
proto.mutable_int32_data(),
&this->context_);
break;
case TensorProto_DataType_INT16:
detail::CopyToProtoWithCast(
chunkSize,
input.template data<int16_t>() + chunkBegin,
proto.mutable_int32_data(),
&this->context_);
break;
case TensorProto_DataType_INT64:
detail::CopyToProtoAsIs(
chunkSize,
input.template data<int64_t>() + chunkBegin,
proto.mutable_int64_data(),
&this->context_);
break;
case TensorProto_DataType_FLOAT16:
detail::CopyToProtoWithCast(
chunkSize,
reinterpret_cast<const uint16_t*>(input.template data<float16>()) +
chunkBegin,
proto.mutable_int32_data(),
&this->context_);
break;
case TensorProto_DataType_DOUBLE:
detail::CopyToProtoAsIs(
chunkSize,
input.template data<double>() + chunkBegin,
proto.mutable_double_data(),
&this->context_);
break;
case TensorProto_DataType_UNDEFINED:
LOG(FATAL) << "TensorSerializer does not have a serialization "
"implementation for " << input.meta().name();
break;
// Note: we intentially do not provide "default:" so if any new data types
// are added, the compiler should warn the user to add the case here.
}
StoreDeviceDetail(input, &proto);
}
template <class Context>
bool TensorDeserializer<Context>::Deserialize(
const BlobProto& blob_proto, Blob* blob) {
return Deserialize(
blob_proto.tensor(),
blob->GetMutable<Tensor<Context>>());
}
template <class Context>
bool TensorDeserializer<Context>::Deserialize(
const TensorProto& proto, Tensor<Context>* tensor) {
// We create a local context for deserializing. Since Caffe2 contexts are
// usually lightweighted, this should not involve too much overhead.
Context context(proto.device_detail());
context.SwitchToDevice();
vector<TIndex> dims;
for (const TIndex d : proto.dims()) {
dims.push_back(d);
}
tensor->Resize(dims);
// Safety check for zero-sized tensors: no copy needed.
if (tensor->size() == 0) {
return true;
}
int64_t chunkBegin = 0;
auto chunkEnd = tensor->size();
if (proto.has_segment()) {
chunkBegin = proto.segment().begin();
chunkEnd = proto.segment().end();
}
CAFFE_ENFORCE(
0 <= chunkBegin && chunkBegin < chunkEnd && chunkEnd <= tensor->size(),
"Invalid chunk ",
chunkBegin,
' ',
chunkEnd,
" with total tensor size ",
tensor->size());
auto chunkSize = chunkEnd - chunkBegin;
switch (proto.data_type()) {
case TensorProto_DataType_FLOAT:
detail::CopyFromProtoAsIs(
chunkSize,
proto.float_data(),
tensor->template mutable_data<float>() + chunkBegin,
&context);
break;
case TensorProto_DataType_INT32:
detail::CopyFromProtoAsIs(
chunkSize,
proto.int32_data(),
tensor->template mutable_data<int>() + chunkBegin,
&context);
break;
case TensorProto_DataType_BYTE:
// Since BYTE stores the data in a string field instead of a repreated
// field we will have it special cased.
if (chunkSize != proto.byte_data().size()) {
LOG(ERROR) << "Incorrect proto field size.";
return false;
}
context.template Copy<uint8_t, Context, CPUContext>(
chunkSize,
reinterpret_cast<const uint8_t*>(proto.byte_data().data()),
tensor->template mutable_data<uint8_t>() + chunkBegin);
break;
case TensorProto_DataType_STRING:
// Special handing of string because it is a non-fundamental type.
{
string* content = tensor->template mutable_data<string>();
for (int i = 0; i < chunkSize; ++i) {
content[i + chunkBegin] = proto.string_data(i);
}
}
break;
case TensorProto_DataType_BOOL:
detail::CopyFromProtoWithCast(
chunkSize,
proto.int32_data(),
tensor->template mutable_data<bool>() + chunkBegin,
&context);
break;
case TensorProto_DataType_UINT8:
detail::CopyFromProtoWithCast(
chunkSize,
proto.int32_data(),
tensor->template mutable_data<uint8_t>() + chunkBegin,
&context);
break;
case TensorProto_DataType_INT8:
detail::CopyFromProtoWithCast(
chunkSize,
proto.int32_data(),
tensor->template mutable_data<int8_t>() + chunkBegin,
&context);
break;
case TensorProto_DataType_UINT16:
detail::CopyFromProtoWithCast(
chunkSize,
proto.int32_data(),
tensor->template mutable_data<uint16_t>() + chunkBegin,
&context);
break;
case TensorProto_DataType_INT16:
detail::CopyFromProtoWithCast(
chunkSize,
proto.int32_data(),
tensor->template mutable_data<int16_t>() + chunkBegin,
&context);
break;
case TensorProto_DataType_INT64:
detail::CopyFromProtoAsIs(
chunkSize,
proto.int64_data(),
tensor->template mutable_data<int64_t>() + chunkBegin,
&context);
break;
case TensorProto_DataType_FLOAT16:
detail::CopyFromProtoWithCast(
chunkSize,
proto.int32_data(),
reinterpret_cast<uint16_t*>(
tensor->template mutable_data<float16>()) +
chunkBegin,
&context);
break;
case TensorProto_DataType_DOUBLE:
detail::CopyFromProtoAsIs(
chunkSize,
proto.double_data(),
tensor->template mutable_data<double>() + chunkBegin,
&context);
break;
case TensorProto_DataType_UNDEFINED:
LOG(ERROR)
<< "Cannot deserialize from a TensorProto UNDEFINED data type.";
return false;
}
context.FinishDeviceComputation();
return true;
}
} // namespace caffe2
#endif // CAFFE2_CORE_BLOB_SERIALIZATION_H_