mirror of
https://github.com/pytorch/pytorch.git
synced 2025-10-27 17:54:55 +08:00
Summary: This is moving predictor exporter's code to open-source. Differential Revision: D4815409 fbshipit-source-id: ce1508a2b6b973c91b0420928d2b4c3953f26e6c
112 lines
3.1 KiB
Python
112 lines
3.1 KiB
Python
from __future__ import absolute_import
|
|
from __future__ import division
|
|
from __future__ import print_function
|
|
from __future__ import unicode_literals
|
|
|
|
from caffe2.python import core
|
|
|
|
|
|
def create_predict_net(predictor_export_meta):
|
|
"""
|
|
Return the input prediction net.
|
|
"""
|
|
# Construct a new net to clear the existing settings.
|
|
net = core.Net(predictor_export_meta.predict_net.name or "predict")
|
|
net.Proto().op.extend(predictor_export_meta.predict_net.op)
|
|
net.Proto().external_input.extend(
|
|
predictor_export_meta.inputs + predictor_export_meta.parameters)
|
|
net.Proto().external_output.extend(predictor_export_meta.outputs)
|
|
return net.Proto()
|
|
|
|
|
|
def create_predict_init_net(ws, predictor_export_meta):
|
|
"""
|
|
Return an initialization net that zero-fill all the input and
|
|
output blobs, using the shapes from the provided workspace. This is
|
|
necessary as there is no shape inference functionality in Caffe2.
|
|
"""
|
|
net = core.Net("predict-init")
|
|
|
|
def zero_fill(blob):
|
|
shape = predictor_export_meta.shapes.get(blob)
|
|
if shape is None:
|
|
if blob not in ws.blobs:
|
|
raise Exception(
|
|
"{} not in workspace but needed for shape: {}".format(
|
|
blob, ws.blobs))
|
|
|
|
shape = ws.blobs[blob].fetch().shape
|
|
net.ConstantFill([], blob, shape=shape, value=0.0)
|
|
|
|
external_blobs = predictor_export_meta.inputs + \
|
|
predictor_export_meta.outputs
|
|
for blob in external_blobs:
|
|
zero_fill(blob)
|
|
|
|
net.Proto().external_input.extend(external_blobs)
|
|
if predictor_export_meta.extra_init_net:
|
|
net.AppendNet(predictor_export_meta.extra_init_net)
|
|
return net.Proto()
|
|
|
|
|
|
def get_comp_name(string, name):
|
|
if name:
|
|
return string + '_' + name
|
|
return string
|
|
|
|
|
|
def _ProtoMapGet(field, key):
|
|
'''
|
|
Given the key, get the value of the repeated field.
|
|
Helper function used by protobuf since it doesn't have map construct
|
|
'''
|
|
for v in field:
|
|
if (v.key == key):
|
|
return v.value
|
|
return None
|
|
|
|
|
|
def GetPlan(meta_net_def, key):
|
|
return _ProtoMapGet(meta_net_def.plans, key)
|
|
|
|
|
|
def GetPlanOriginal(meta_net_def, key):
|
|
return _ProtoMapGet(meta_net_def.plans, key)
|
|
|
|
|
|
def GetBlobs(meta_net_def, key):
|
|
blobs = _ProtoMapGet(meta_net_def.blobs, key)
|
|
if blobs is None:
|
|
return []
|
|
return blobs
|
|
|
|
|
|
def GetNet(meta_net_def, key):
|
|
return _ProtoMapGet(meta_net_def.nets, key)
|
|
|
|
|
|
def GetNetOriginal(meta_net_def, key):
|
|
return _ProtoMapGet(meta_net_def.nets, key)
|
|
|
|
|
|
def GetApplicationSpecificInfo(meta_net_def, key):
|
|
return _ProtoMapGet(meta_net_def.applicationSpecificInfo, key)
|
|
|
|
|
|
def AddBlobs(meta_net_def, blob_name, blob_def):
|
|
blobs = _ProtoMapGet(meta_net_def.blobs, blob_name)
|
|
if blobs is None:
|
|
blobs = meta_net_def.blobs.add()
|
|
blobs.key = blob_name
|
|
blobs = blobs.value
|
|
for blob in blob_def:
|
|
blobs.append(blob)
|
|
|
|
|
|
def AddPlan(meta_net_def, plan_name, plan_def):
|
|
meta_net_def.plans.add(key=plan_name, value=plan_def)
|
|
|
|
|
|
def AddNet(meta_net_def, net_name, net_def):
|
|
meta_net_def.nets.add(key=net_name, value=net_def)
|