Files
pytorch/benchmarks/operator_benchmark/pt/qlayernorm_test.py
Xuehai Pan c0ed38e644 [BE][Easy][3/19] enforce style for empty lines in import segments in benchmarks/ (#129754)
See https://github.com/pytorch/pytorch/pull/129751#issue-2380881501. Most changes are auto-generated by linter.

You can review these PRs via:

```bash
git diff --ignore-all-space --ignore-blank-lines HEAD~1
```

Pull Request resolved: https://github.com/pytorch/pytorch/pull/129754
Approved by: https://github.com/ezyang
2024-07-17 14:34:42 +00:00

55 lines
1.4 KiB
Python

import operator_benchmark as op_bench
import torch
"""Microbenchmarks for quantized layernorm operator."""
layernorm_configs_short = op_bench.cross_product_configs(
dims=(
(1, 8, 16),
(8, 8, 16),
(32, 8, 16),
(64, 128, 56, 56),
),
dtype=(torch.qint8,),
tags=["short"],
)
class QLayerNormBenchmark(op_bench.TorchBenchmarkBase):
def init(self, dims, dtype):
X = (torch.rand(*dims) - 0.5) * 256
scale = 1.0
zero_point = 0
self.qX = torch.quantize_per_tensor(
X, scale=scale, zero_point=zero_point, dtype=dtype
)
self.inputs = {
"qX": self.qX,
"weight": torch.rand(*self.qX.size()[1:], dtype=torch.float),
"bias": torch.rand(*self.qX.size()[1:], dtype=torch.float),
"eps": 1e-5,
"Y_scale": 0.1,
"Y_zero_point": 0,
}
def forward(self, qX, weight, bias, eps: float, Y_scale: float, Y_zero_point: int):
return torch.ops.quantized.layer_norm(
qX,
qX.size()[1:],
weight=weight,
bias=bias,
eps=eps,
output_scale=Y_scale,
output_zero_point=Y_zero_point,
)
op_bench.generate_pt_test(layernorm_configs_short, QLayerNormBenchmark)
if __name__ == "__main__":
op_bench.benchmark_runner.main()