mirror of
https://github.com/pytorch/pytorch.git
synced 2025-10-20 21:14:14 +08:00
See https://github.com/pytorch/pytorch/pull/129751#issue-2380881501. Most changes are auto-generated by linter. You can review these PRs via: ```bash git diff --ignore-all-space --ignore-blank-lines HEAD~1 ``` Pull Request resolved: https://github.com/pytorch/pytorch/pull/129754 Approved by: https://github.com/ezyang
96 lines
2.7 KiB
Python
96 lines
2.7 KiB
Python
import numpy
|
|
from pt import configs
|
|
|
|
import operator_benchmark as op_bench
|
|
|
|
import torch
|
|
import torch.ao.nn.qat as nnqat
|
|
from torch.ao.quantization import default_embedding_qat_qconfig
|
|
|
|
|
|
"""
|
|
Microbenchmarks for QAT Embedding + EmbeddingBag operators.
|
|
"""
|
|
|
|
|
|
class QATEmbeddingBagBenchmark(op_bench.TorchBenchmarkBase):
|
|
def init(
|
|
self,
|
|
embeddingbags,
|
|
dim,
|
|
mode,
|
|
input_size,
|
|
offset,
|
|
sparse,
|
|
include_last_offset,
|
|
device,
|
|
):
|
|
qconfig = default_embedding_qat_qconfig
|
|
self.embedding = nnqat.EmbeddingBag(
|
|
num_embeddings=embeddingbags,
|
|
embedding_dim=dim,
|
|
mode=mode,
|
|
include_last_offset=include_last_offset,
|
|
sparse=sparse,
|
|
device=device,
|
|
qconfig=qconfig,
|
|
)
|
|
numpy.random.seed((1 << 32) - 1)
|
|
offsets = torch.LongTensor([offset], device=device)
|
|
input = torch.tensor(
|
|
numpy.random.randint(0, embeddingbags, input_size), device=device
|
|
).long()
|
|
self.inputs = {
|
|
"input": input,
|
|
"offset": torch.cat(
|
|
(offsets, torch.tensor([input.size(0)], dtype=torch.long)), 0
|
|
),
|
|
}
|
|
self.set_module_name("qatEmbeddingBag")
|
|
|
|
def forward(self, input, offset):
|
|
return self.embedding(input, offset)
|
|
|
|
|
|
# Currently, EmbeddingBag QAT does not support sparse embeddings.
|
|
embeddingbag_short_dense_configs = [
|
|
config
|
|
for config in configs.embeddingbag_short_configs
|
|
if {"sparse": True} not in config
|
|
]
|
|
|
|
op_bench.generate_pt_test(embeddingbag_short_dense_configs, QATEmbeddingBagBenchmark)
|
|
op_bench.generate_pt_gradient_test(
|
|
embeddingbag_short_dense_configs, QATEmbeddingBagBenchmark
|
|
)
|
|
|
|
|
|
class QATEmbeddingBenchmark(op_bench.TorchBenchmarkBase):
|
|
def init(self, num_embeddings, embedding_dim, input_size, device):
|
|
qconfig = default_embedding_qat_qconfig
|
|
self.embedding = nnqat.Embedding(
|
|
num_embeddings=num_embeddings,
|
|
embedding_dim=embedding_dim,
|
|
qconfig=qconfig,
|
|
device=device,
|
|
)
|
|
self.embedding.qconfig = default_embedding_qat_qconfig
|
|
numpy.random.seed((1 << 32) - 1)
|
|
self.input = torch.tensor(
|
|
numpy.random.randint(0, num_embeddings, input_size), device=device
|
|
).long()
|
|
self.inputs = {"input": self.input}
|
|
self.set_module_name("qatEmbedding")
|
|
|
|
def forward(self, input):
|
|
return self.embedding(input)
|
|
|
|
|
|
op_bench.generate_pt_test(configs.embedding_short_configs, QATEmbeddingBenchmark)
|
|
op_bench.generate_pt_gradient_test(
|
|
configs.embedding_short_configs, QATEmbeddingBenchmark
|
|
)
|
|
|
|
if __name__ == "__main__":
|
|
op_bench.benchmark_runner.main()
|