Files
pytorch/benchmarks/operator_benchmark/pt/pool_test.py
Xuehai Pan c0ed38e644 [BE][Easy][3/19] enforce style for empty lines in import segments in benchmarks/ (#129754)
See https://github.com/pytorch/pytorch/pull/129751#issue-2380881501. Most changes are auto-generated by linter.

You can review these PRs via:

```bash
git diff --ignore-all-space --ignore-blank-lines HEAD~1
```

Pull Request resolved: https://github.com/pytorch/pytorch/pull/129754
Approved by: https://github.com/ezyang
2024-07-17 14:34:42 +00:00

172 lines
4.0 KiB
Python

import operator_benchmark as op_bench
import torch
import torch.nn as nn
"""
Microbenchmarks for MaxPool1d and AvgPool1d operators.
"""
# Configs for pool-1d ops
pool_1d_configs_short = op_bench.config_list(
attr_names=["kernel", "stride", "N", "C", "L"],
attrs=[
[3, 1, 8, 256, 256],
],
cross_product_configs={
"device": ["cpu", "cuda"],
},
tags=["short"],
)
pool_1d_configs_long = op_bench.cross_product_configs(
kernel=[3],
stride=[1, 2],
N=[8, 16],
C=[3],
L=[128, 256],
device=["cpu", "cuda"],
tags=["long"],
)
pool_1d_ops_list = op_bench.op_list(
attr_names=["op_name", "op_func"],
attrs=[
["MaxPool1d", nn.MaxPool1d],
["AvgPool1d", nn.AvgPool1d],
],
)
class Pool1dBenchmark(op_bench.TorchBenchmarkBase):
def init(self, kernel, stride, N, C, L, device, op_func):
self.inputs = {"input": torch.rand(N, C, L, device=device)}
self.op_func = op_func(kernel, stride=stride)
def forward(self, input):
return self.op_func(input)
op_bench.generate_pt_tests_from_op_list(
pool_1d_ops_list, pool_1d_configs_short + pool_1d_configs_long, Pool1dBenchmark
)
"""
Microbenchmarks for MaxPool2d and AvgPool2d operators.
"""
# Configs for pool-2d ops
pool_2d_configs_short = op_bench.config_list(
attr_names=["kernel", "stride", "N", "C", "H", "W"],
attrs=[
[[3, 1], [2, 1], 1, 16, 32, 32],
],
cross_product_configs={
"device": ["cpu", "cuda"],
},
tags=["short"],
)
pool_2d_configs_long = op_bench.cross_product_configs(
kernel=[[3, 2], [3, 3]],
stride=[[2, 2]],
N=[8, 16],
C=[32],
H=[32, 64],
W=[32, 64],
device=["cpu", "cuda"],
tags=["long"],
)
pool_2d_ops_list = op_bench.op_list(
attr_names=["op_name", "op_func"],
attrs=[
["MaxPool2d", nn.MaxPool2d],
["AvgPool2d", nn.AvgPool2d],
["AdaptiveMaxPool2d", lambda kernel, stride: nn.AdaptiveMaxPool2d(kernel)],
[
"FractionalMaxPool2d",
lambda kernel, stride: nn.FractionalMaxPool2d(kernel, output_size=2),
],
],
)
class Pool2dBenchmark(op_bench.TorchBenchmarkBase):
def init(self, kernel, stride, N, C, H, W, device, op_func):
self.inputs = {"input": torch.rand(N, C, H, W, device=device)}
self.op_func = op_func(kernel, stride=stride)
def forward(self, input):
return self.op_func(input)
op_bench.generate_pt_tests_from_op_list(
pool_2d_ops_list, pool_2d_configs_short + pool_2d_configs_long, Pool2dBenchmark
)
"""
Microbenchmarks for MaxPool3d and AvgPool3d operators.
"""
# Configs for pool-3d ops
pool_3d_configs_short = op_bench.config_list(
attr_names=["kernel", "stride", "N", "C", "D", "H", "W"],
attrs=[
[[3, 1, 3], [2, 1, 2], 1, 16, 16, 32, 32],
],
cross_product_configs={
"device": ["cpu", "cuda"],
},
tags=["short"],
)
pool_3d_configs_long = op_bench.cross_product_configs(
kernel=[[3, 2, 3], [3, 3, 3]],
stride=[[2, 2, 2]],
N=[8, 16],
C=[32],
D=[32],
H=[32, 64],
W=[32, 64],
device=["cpu", "cuda"],
tags=["long"],
)
pool_3d_ops_list = op_bench.op_list(
attr_names=["op_name", "op_func"],
attrs=[
["MaxPool3d", nn.MaxPool3d],
["AvgPool3d", nn.AvgPool3d],
["AdaptiveMaxPool3d", lambda kernel, stride: nn.AdaptiveMaxPool3d(kernel)],
[
"FractionalMaxPool3d",
lambda kernel, stride: nn.FractionalMaxPool3d(kernel, output_size=2),
],
],
)
class Pool3dBenchmark(op_bench.TorchBenchmarkBase):
def init(self, kernel, stride, N, C, D, H, W, device, op_func):
self.inputs = {"input": torch.rand(N, C, D, H, W, device=device)}
self.op_func = op_func(kernel, stride=stride)
def forward(self, input):
return self.op_func(input)
op_bench.generate_pt_tests_from_op_list(
pool_3d_ops_list, pool_3d_configs_short + pool_3d_configs_long, Pool3dBenchmark
)
if __name__ == "__main__":
op_bench.benchmark_runner.main()