mirror of
https://github.com/pytorch/pytorch.git
synced 2025-10-20 12:54:11 +08:00
See https://github.com/pytorch/pytorch/pull/129751#issue-2380881501. Most changes are auto-generated by linter. You can review these PRs via: ```bash git diff --ignore-all-space --ignore-blank-lines HEAD~1 ``` Pull Request resolved: https://github.com/pytorch/pytorch/pull/129754 Approved by: https://github.com/ezyang
55 lines
1.3 KiB
Python
55 lines
1.3 KiB
Python
import operator_benchmark as op_bench
|
|
|
|
import torch
|
|
|
|
|
|
"""Microbenchmarks for MatMul operator"""
|
|
|
|
# Configs for PT Matmul operator
|
|
mm_short_configs = op_bench.config_list(
|
|
attr_names=["M", "N", "K", "trans_a", "trans_b"],
|
|
attrs=[
|
|
[1, 1, 1, True, False],
|
|
[128, 128, 128, True, False],
|
|
[256, 256, 256, False, True],
|
|
],
|
|
cross_product_configs={
|
|
"device": ["cpu", "cuda"],
|
|
},
|
|
tags=["short"],
|
|
)
|
|
|
|
|
|
mm_long_configs = op_bench.cross_product_configs(
|
|
M=[32],
|
|
N=[512, 128],
|
|
K=[64],
|
|
trans_a=[False, True],
|
|
trans_b=[True, False],
|
|
device=["cpu", "cuda"],
|
|
tags=["long"],
|
|
)
|
|
|
|
|
|
class MatMulBenchmark(op_bench.TorchBenchmarkBase):
|
|
def init(self, M, N, K, trans_a, trans_b, device):
|
|
self.inputs = {
|
|
"input_one": torch.rand(M, N, device=device)
|
|
if trans_a
|
|
else torch.rand(N, M, device=device).t(),
|
|
"input_two": torch.rand(N, K, device=device)
|
|
if trans_b
|
|
else torch.rand(K, N, device=device).t(),
|
|
}
|
|
self.set_module_name("matmul")
|
|
|
|
def forward(self, input_one, input_two):
|
|
return torch.matmul(input_one, input_two)
|
|
|
|
|
|
op_bench.generate_pt_test(mm_long_configs + mm_short_configs, MatMulBenchmark)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
op_bench.benchmark_runner.main()
|