Files
pytorch/benchmarks/operator_benchmark/pt/matmul_test.py
Xuehai Pan c0ed38e644 [BE][Easy][3/19] enforce style for empty lines in import segments in benchmarks/ (#129754)
See https://github.com/pytorch/pytorch/pull/129751#issue-2380881501. Most changes are auto-generated by linter.

You can review these PRs via:

```bash
git diff --ignore-all-space --ignore-blank-lines HEAD~1
```

Pull Request resolved: https://github.com/pytorch/pytorch/pull/129754
Approved by: https://github.com/ezyang
2024-07-17 14:34:42 +00:00

55 lines
1.3 KiB
Python

import operator_benchmark as op_bench
import torch
"""Microbenchmarks for MatMul operator"""
# Configs for PT Matmul operator
mm_short_configs = op_bench.config_list(
attr_names=["M", "N", "K", "trans_a", "trans_b"],
attrs=[
[1, 1, 1, True, False],
[128, 128, 128, True, False],
[256, 256, 256, False, True],
],
cross_product_configs={
"device": ["cpu", "cuda"],
},
tags=["short"],
)
mm_long_configs = op_bench.cross_product_configs(
M=[32],
N=[512, 128],
K=[64],
trans_a=[False, True],
trans_b=[True, False],
device=["cpu", "cuda"],
tags=["long"],
)
class MatMulBenchmark(op_bench.TorchBenchmarkBase):
def init(self, M, N, K, trans_a, trans_b, device):
self.inputs = {
"input_one": torch.rand(M, N, device=device)
if trans_a
else torch.rand(N, M, device=device).t(),
"input_two": torch.rand(N, K, device=device)
if trans_b
else torch.rand(K, N, device=device).t(),
}
self.set_module_name("matmul")
def forward(self, input_one, input_two):
return torch.matmul(input_one, input_two)
op_bench.generate_pt_test(mm_long_configs + mm_short_configs, MatMulBenchmark)
if __name__ == "__main__":
op_bench.benchmark_runner.main()