mirror of
https://github.com/pytorch/pytorch.git
synced 2025-10-20 12:54:11 +08:00
See https://github.com/pytorch/pytorch/pull/129751#issue-2380881501. Most changes are auto-generated by linter. You can review these PRs via: ```bash git diff --ignore-all-space --ignore-blank-lines HEAD~1 ``` Pull Request resolved: https://github.com/pytorch/pytorch/pull/129754 Approved by: https://github.com/ezyang
63 lines
1.5 KiB
Python
63 lines
1.5 KiB
Python
import numpy
|
|
|
|
import operator_benchmark as op_bench
|
|
|
|
import torch
|
|
|
|
|
|
"""Microbenchmarks for index_select operator."""
|
|
|
|
# An example input from this configuration is M=4, N=4, dim=0.
|
|
index_select_configs_short = op_bench.config_list(
|
|
attr_names=["M", "N", "K", "dim"],
|
|
attrs=[
|
|
[8, 8, 1, 1],
|
|
[256, 512, 1, 1],
|
|
[512, 512, 1, 1],
|
|
[8, 8, 2, 1],
|
|
[256, 512, 2, 1],
|
|
[512, 512, 2, 1],
|
|
],
|
|
cross_product_configs={
|
|
"device": ["cpu", "cuda"],
|
|
},
|
|
tags=["short"],
|
|
)
|
|
|
|
|
|
index_select_configs_long = op_bench.cross_product_configs(
|
|
M=[128, 1024],
|
|
N=[128, 1024],
|
|
K=[1, 2],
|
|
dim=[1],
|
|
device=["cpu", "cuda"],
|
|
tags=["long"],
|
|
)
|
|
|
|
|
|
class IndexSelectBenchmark(op_bench.TorchBenchmarkBase):
|
|
def init(self, M, N, K, dim, device):
|
|
max_val = N
|
|
numpy.random.seed((1 << 32) - 1)
|
|
index_dim = numpy.random.randint(0, N)
|
|
self.inputs = {
|
|
"input_one": torch.rand(M, N, K, device=device),
|
|
"dim": dim,
|
|
"index": torch.tensor(
|
|
numpy.random.randint(0, max_val, index_dim), device=device
|
|
),
|
|
}
|
|
self.set_module_name("index_select")
|
|
|
|
def forward(self, input_one, dim, index):
|
|
return torch.index_select(input_one, dim, index)
|
|
|
|
|
|
op_bench.generate_pt_test(
|
|
index_select_configs_short + index_select_configs_long, IndexSelectBenchmark
|
|
)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
op_bench.benchmark_runner.main()
|