mirror of
https://github.com/pytorch/pytorch.git
synced 2025-10-20 12:54:11 +08:00
See https://github.com/pytorch/pytorch/pull/129751#issue-2380881501. Most changes are auto-generated by linter. You can review these PRs via: ```bash git diff --ignore-all-space --ignore-blank-lines HEAD~1 ``` Pull Request resolved: https://github.com/pytorch/pytorch/pull/129754 Approved by: https://github.com/ezyang
50 lines
1.2 KiB
Python
50 lines
1.2 KiB
Python
import operator_benchmark as op_bench
|
|
|
|
import torch
|
|
|
|
|
|
"""Microbenchmarks for diag operator"""
|
|
|
|
|
|
# Configs for PT diag operator
|
|
diag_configs_short = op_bench.config_list(
|
|
attr_names=["dim", "M", "N", "diagonal", "out"],
|
|
attrs=[
|
|
[1, 64, 64, 0, True],
|
|
[2, 128, 128, -10, False],
|
|
[1, 256, 256, 20, True],
|
|
],
|
|
cross_product_configs={
|
|
"device": ["cpu", "cuda"],
|
|
},
|
|
tags=["short"],
|
|
)
|
|
|
|
|
|
class DiagBenchmark(op_bench.TorchBenchmarkBase):
|
|
def init(self, dim, M, N, diagonal, out, device):
|
|
self.inputs = {
|
|
"input": torch.rand(M, N, device=device)
|
|
if dim == 2
|
|
else torch.rand(M, device=device),
|
|
"diagonal": diagonal,
|
|
"out": out,
|
|
"out_tensor": torch.tensor(
|
|
(),
|
|
),
|
|
}
|
|
self.set_module_name("diag")
|
|
|
|
def forward(self, input, diagonal: int, out: bool, out_tensor):
|
|
if out:
|
|
return torch.diag(input, diagonal=diagonal, out=out_tensor)
|
|
else:
|
|
return torch.diag(input, diagonal=diagonal)
|
|
|
|
|
|
op_bench.generate_pt_test(diag_configs_short, DiagBenchmark)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
op_bench.benchmark_runner.main()
|