mirror of
https://github.com/pytorch/pytorch.git
synced 2025-10-20 12:54:11 +08:00
See https://github.com/pytorch/pytorch/pull/129751#issue-2380881501. Most changes are auto-generated by linter. You can review these PRs via: ```bash git diff --ignore-all-space --ignore-blank-lines HEAD~1 ``` Pull Request resolved: https://github.com/pytorch/pytorch/pull/129754 Approved by: https://github.com/ezyang
46 lines
1.1 KiB
Python
46 lines
1.1 KiB
Python
import operator_benchmark as op_bench
|
|
|
|
import torch
|
|
|
|
|
|
"""Microbenchmarks for add_ operator. Supports both Caffe2/PyTorch."""
|
|
|
|
|
|
class BmmBenchmark(op_bench.TorchBenchmarkBase):
|
|
def init(self, B, M, N, K, device, op):
|
|
self.inputs = {
|
|
"batch1": torch.rand(
|
|
(B, M, K), device=device, requires_grad=self.auto_set()
|
|
),
|
|
"batch2": torch.rand(
|
|
(
|
|
B,
|
|
K,
|
|
N,
|
|
),
|
|
device=device,
|
|
requires_grad=self.auto_set(),
|
|
),
|
|
}
|
|
self.set_module_name(f"bmm (actual op={op}")
|
|
self.op = torch.bmm if op == "bmm" else torch.matmul
|
|
|
|
def forward(self, batch1, batch2):
|
|
return self.op(batch1, batch2)
|
|
|
|
|
|
bmm_configs = op_bench.cross_product_configs(
|
|
B=[2, 100],
|
|
M=[8, 256],
|
|
N=[256, 16],
|
|
K=[16, 32],
|
|
device=["cpu"],
|
|
tags=["short"],
|
|
op=["bmm", "matmul"],
|
|
)
|
|
|
|
op_bench.generate_pt_test(bmm_configs, BmmBenchmark)
|
|
|
|
if __name__ == "__main__":
|
|
op_bench.benchmark_runner.main()
|