mirror of
https://github.com/pytorch/pytorch.git
synced 2025-10-20 12:54:11 +08:00
See https://github.com/pytorch/pytorch/pull/129751#issue-2380881501. Most changes are auto-generated by linter. You can review these PRs via: ```bash git diff --ignore-all-space --ignore-blank-lines HEAD~1 ``` Pull Request resolved: https://github.com/pytorch/pytorch/pull/129754 Approved by: https://github.com/ezyang
55 lines
1.5 KiB
Python
55 lines
1.5 KiB
Python
import operator_benchmark as op_bench
|
|
|
|
import torch
|
|
from torch import nn
|
|
from torch.ao import pruning
|
|
|
|
|
|
"""Microbenchmarks for sparsifier."""
|
|
|
|
sparse_configs_short = op_bench.config_list(
|
|
attr_names=["M", "SL", "SBS", "ZPB"],
|
|
attrs=[
|
|
[(32, 16), 0.3, (4, 1), 2],
|
|
[(32, 16), 0.6, (1, 4), 4],
|
|
[(17, 23), 0.9, (1, 1), 1],
|
|
],
|
|
tags=("short",),
|
|
)
|
|
|
|
sparse_configs_long = op_bench.cross_product_configs(
|
|
M=((128, 128), (255, 324)), # Mask shape
|
|
SL=(0.0, 1.0, 0.3, 0.6, 0.9, 0.99), # Sparsity level
|
|
SBS=((1, 4), (1, 8), (4, 1), (8, 1)), # Sparse block shape
|
|
ZPB=(0, 1, 2, 3, 4, None), # Zeros per block
|
|
tags=("long",),
|
|
)
|
|
|
|
|
|
class WeightNormSparsifierBenchmark(op_bench.TorchBenchmarkBase):
|
|
def init(self, M, SL, SBS, ZPB):
|
|
weight = torch.ones(M)
|
|
model = nn.Module()
|
|
model.register_buffer("weight", weight)
|
|
|
|
sparse_config = [{"tensor_fqn": "weight"}]
|
|
self.sparsifier = pruning.WeightNormSparsifier(
|
|
sparsity_level=SL,
|
|
sparse_block_shape=SBS,
|
|
zeros_per_block=ZPB,
|
|
)
|
|
self.sparsifier.prepare(model, config=sparse_config)
|
|
self.inputs = {} # All benchmarks need inputs :)
|
|
self.set_module_name("weight_norm_sparsifier_step")
|
|
|
|
def forward(self):
|
|
self.sparsifier.step()
|
|
|
|
|
|
all_tests = sparse_configs_short + sparse_configs_long
|
|
op_bench.generate_pt_test(all_tests, WeightNormSparsifierBenchmark)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
op_bench.benchmark_runner.main()
|