Files
pytorch/benchmarks/fastrnns/test.py
Aaron Gokaslan 6c2a8b6b38 [Ez][BE]: Enable new stable ruff rules (#129825)
Applies a bunch of new ruff lint rules that are now stable. Some of these improve efficiency or readability. Since I already did passes on the codebase for these when they were in preview, there should be relatively few changes to the codebase. This is just more for future hardening of it.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/129825
Approved by: https://github.com/XuehaiPan, https://github.com/jansel, https://github.com/malfet
2024-07-02 14:47:10 +00:00

183 lines
5.8 KiB
Python

import argparse
import torch
import torch.nn as nn
from .factory import pytorch_lstm_creator, varlen_pytorch_lstm_creator
from .runner import get_nn_runners
def barf():
import pdb
pdb.set_trace()
def assertEqual(tensor, expected, threshold=0.001):
if isinstance(tensor, (list, tuple)):
for t, e in zip(tensor, expected):
assertEqual(t, e)
else:
if (tensor - expected).abs().max() > threshold:
barf()
def filter_requires_grad(tensors):
return [t for t in tensors if t.requires_grad]
def test_rnns(
experim_creator,
control_creator,
check_grad=True,
verbose=False,
seqLength=100,
numLayers=1,
inputSize=512,
hiddenSize=512,
miniBatch=64,
device="cuda",
seed=17,
):
creator_args = dict(
seqLength=seqLength,
numLayers=numLayers,
inputSize=inputSize,
hiddenSize=hiddenSize,
miniBatch=miniBatch,
device=device,
seed=seed,
)
print("Setting up...")
control = control_creator(**creator_args)
experim = experim_creator(**creator_args)
# Precondition
assertEqual(experim.inputs, control.inputs)
assertEqual(experim.params, control.params)
print("Checking outputs...")
control_outputs = control.forward(*control.inputs)
experim_outputs = experim.forward(*experim.inputs)
assertEqual(experim_outputs, control_outputs)
print("Checking grads...")
assert control.backward_setup is not None
assert experim.backward_setup is not None
assert control.backward is not None
assert experim.backward is not None
control_backward_inputs = control.backward_setup(control_outputs, seed)
experim_backward_inputs = experim.backward_setup(experim_outputs, seed)
control.backward(*control_backward_inputs)
experim.backward(*experim_backward_inputs)
control_grads = [p.grad for p in control.params]
experim_grads = [p.grad for p in experim.params]
assertEqual(experim_grads, control_grads)
if verbose:
print(experim.forward.graph_for(*experim.inputs))
print()
def test_vl_py(**test_args):
# XXX: This compares vl_py with vl_lstm.
# It's done this way because those two don't give the same outputs so
# the result isn't an apples-to-apples comparison right now.
control_creator = varlen_pytorch_lstm_creator
name, experim_creator, context = get_nn_runners("vl_py")[0]
with context():
print(f"testing {name}...")
creator_keys = [
"seqLength",
"numLayers",
"inputSize",
"hiddenSize",
"miniBatch",
"device",
"seed",
]
creator_args = {key: test_args[key] for key in creator_keys}
print("Setting up...")
control = control_creator(**creator_args)
experim = experim_creator(**creator_args)
# Precondition
assertEqual(experim.inputs, control.inputs[:2])
assertEqual(experim.params, control.params)
print("Checking outputs...")
control_out, control_hiddens = control.forward(*control.inputs)
control_hx, control_cx = control_hiddens
experim_out, experim_hiddens = experim.forward(*experim.inputs)
experim_hx, experim_cx = experim_hiddens
experim_padded = nn.utils.rnn.pad_sequence(experim_out).squeeze(-2)
assertEqual(experim_padded, control_out)
assertEqual(torch.cat(experim_hx, dim=1), control_hx)
assertEqual(torch.cat(experim_cx, dim=1), control_cx)
print("Checking grads...")
assert control.backward_setup is not None
assert experim.backward_setup is not None
assert control.backward is not None
assert experim.backward is not None
control_backward_inputs = control.backward_setup(
(control_out, control_hiddens), test_args["seed"]
)
experim_backward_inputs = experim.backward_setup(
(experim_out, experim_hiddens), test_args["seed"]
)
control.backward(*control_backward_inputs)
experim.backward(*experim_backward_inputs)
control_grads = [p.grad for p in control.params]
experim_grads = [p.grad for p in experim.params]
assertEqual(experim_grads, control_grads)
if test_args["verbose"]:
print(experim.forward.graph_for(*experim.inputs))
print()
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Test lstm correctness")
parser.add_argument("--seqLength", default="100", type=int)
parser.add_argument("--numLayers", default="1", type=int)
parser.add_argument("--inputSize", default="512", type=int)
parser.add_argument("--hiddenSize", default="512", type=int)
parser.add_argument("--miniBatch", default="64", type=int)
parser.add_argument("--device", default="cuda", type=str)
parser.add_argument("--check-grad", "--check_grad", default="True", type=bool)
parser.add_argument("--variable-lstms", "--variable_lstms", action="store_true")
parser.add_argument("--seed", default="17", type=int)
parser.add_argument("--verbose", action="store_true")
parser.add_argument("--rnns", nargs="*", help="What to run. jit_premul, jit, etc")
args = parser.parse_args()
if args.rnns is None:
args.rnns = ["jit_premul", "jit"]
print(args)
if "cuda" in args.device:
assert torch.cuda.is_available()
rnn_runners = get_nn_runners(*args.rnns)
should_test_varlen_lstms = args.variable_lstms
test_args = vars(args)
del test_args["rnns"]
del test_args["variable_lstms"]
if should_test_varlen_lstms:
test_vl_py(**test_args)
for name, creator, context in rnn_runners:
with context():
print(f"testing {name}...")
test_rnns(creator, pytorch_lstm_creator, **test_args)