mirror of
https://github.com/pytorch/pytorch.git
synced 2025-10-20 21:14:14 +08:00
Summary: This diff does a big refactor of PrecompileContext to make it considerably simpler: instead of being a CacheArtifactManager and managing a bunch of bytes, it simply stores two things: dynamo cache entries and backend cache entries. When asked, it stitches them together into PrecompileCacheEntries, which are stored by DynamoCache. This structure then allows us to register DynamoCache to the regular Megacache API, instead of having two separate APIs that are confusing. It also lets us remove the autotune cache integration, since MegaCache API will automatically store autotune cache entries. The intent here is that users who want to use caching precompile will simply be able to use torch.compiler.save_cache_artifacts as before, just with `torch.dynamo.config.caching_precompile` set to True. They can also directly interact with PrecompileContext if they wish to specifically only load Precompile entries, using PrecompileContext.create_cache_entries(). Saving single entries and such with DynamoCache still works normally. Test Plan: All existing unit tests pass. Rollback Plan: Differential Revision: D82380307 Pull Request resolved: https://github.com/pytorch/pytorch/pull/162886 Approved by: https://github.com/zhxchen17
642 lines
22 KiB
Python
642 lines
22 KiB
Python
"""
|
|
PyTorch Inductor Autotuning Cache System
|
|
|
|
This module implements a caching system for autotuning configurations in PyTorch's Inductor compiler.
|
|
It provides mechanisms to store and retrieve optimal kernel configurations both locally and remotely,
|
|
which significantly speeds up compilation by reusing previously discovered optimal parameters.
|
|
|
|
The caching system includes:
|
|
- Local filesystem caching for individual machine reuse
|
|
- Remote caching for sharing optimizations across machines
|
|
- Bundled caching to efficiently store multiple related configurations
|
|
- Cache invalidation based on PyTorch versions and backend changes
|
|
- Serialization/deserialization support for worker processes
|
|
|
|
Key components:
|
|
- AutotuneCache: Main class for managing cache access and storage
|
|
- AutotuneCacheBundler: Bundles multiple cache entries for efficient storage
|
|
- LocalAutotuneCache: Handles filesystem-based caching
|
|
- _LocalAutotuneCacheBackend: Low-level file operations for cache storage
|
|
- AutotuneCacheArtifact: Integration with PyTorch's artifact system
|
|
|
|
This caching system is critical for performance as it eliminates the need to re-run
|
|
expensive autotuning operations when the same kernels are compiled multiple times.
|
|
"""
|
|
|
|
from __future__ import annotations
|
|
|
|
import dataclasses
|
|
import hashlib
|
|
import logging
|
|
import os
|
|
import os.path
|
|
import re
|
|
from typing import Any, Optional, TYPE_CHECKING
|
|
from typing_extensions import override
|
|
|
|
import torch
|
|
from torch._inductor.runtime.runtime_utils import cache_dir
|
|
from torch.compiler._cache import (
|
|
CacheArtifact,
|
|
CacheArtifactFactory,
|
|
CacheArtifactManager,
|
|
)
|
|
from torch.utils._triton import has_triton
|
|
|
|
from ..remote_cache import (
|
|
create_cache,
|
|
JsonDataTy,
|
|
RemoteCache,
|
|
RemoteCacheBackend,
|
|
RemoteCacheJsonSerde,
|
|
)
|
|
from .triton_compat import Config, HAS_WARP_SPEC
|
|
|
|
|
|
if TYPE_CHECKING:
|
|
from ..remote_cache import Sample
|
|
|
|
log = logging.getLogger(__name__)
|
|
|
|
|
|
_InductorMetaTy = dict[str, object]
|
|
|
|
|
|
def inductor_meta_from_config() -> _InductorMetaTy:
|
|
from torch._inductor import config
|
|
|
|
backend_hash = None
|
|
if has_triton():
|
|
try:
|
|
backend_hash = torch.utils._triton.triton_hash_with_backend()
|
|
except RuntimeError:
|
|
# This can get the error:
|
|
# RuntimeError: 0 active drivers ([]). There should only be one.
|
|
pass
|
|
|
|
is_hip = None
|
|
if torch.version.hip is not None:
|
|
is_hip = True
|
|
|
|
return {
|
|
"autotune_local_cache": config.autotune_local_cache,
|
|
"autotune_remote_cache": config.autotune_remote_cache,
|
|
"backend_hash": backend_hash,
|
|
"bundled_autotune_remote_cache": config.bundled_autotune_remote_cache,
|
|
"coordinate_descent_tuning": config.coordinate_descent_tuning,
|
|
"is_fbcode": config.is_fbcode(),
|
|
"is_hip": is_hip,
|
|
}
|
|
|
|
|
|
@CacheArtifactFactory.register
|
|
class AutotuneCacheArtifact(CacheArtifact):
|
|
@override
|
|
def populate_cache(self) -> None:
|
|
autotune_cache = _LocalAutotuneCacheBackend()
|
|
key = os.path.join(cache_dir(), self.key)
|
|
autotune_cache._put(key, self.content)
|
|
|
|
@override
|
|
@staticmethod
|
|
def type() -> str:
|
|
return "autotune"
|
|
|
|
@override
|
|
@staticmethod
|
|
def encode(content: JsonDataTy) -> bytes:
|
|
assert not isinstance(content, bytes)
|
|
serde = RemoteCacheJsonSerde()
|
|
content_bytes = serde.encode(content)
|
|
assert isinstance(content_bytes, bytes)
|
|
return content_bytes
|
|
|
|
|
|
@dataclasses.dataclass
|
|
class AutotuneCache:
|
|
configs_hash: str
|
|
local_cache: Optional[tuple[RemoteCache[JsonDataTy], str]] = None
|
|
remote_cache: Optional[tuple[RemoteCache[JsonDataTy], str]] = None
|
|
|
|
# Create a AutotuneCache. Returns None if none of the caches can be used.
|
|
@staticmethod
|
|
def create(
|
|
inductor_meta: _InductorMetaTy, filename: str, configs_hash: str
|
|
) -> Optional[AutotuneCache]:
|
|
cache = AutotuneCache(configs_hash)
|
|
key = AutotuneCache._prepare_key(filename)
|
|
|
|
cache._setup_local_cache(inductor_meta, os.path.dirname(filename), key)
|
|
cache._setup_remote_autotune_cache(inductor_meta, key)
|
|
if cache.local_cache or cache.remote_cache:
|
|
return cache
|
|
else:
|
|
return None
|
|
|
|
@staticmethod
|
|
def _prepare_key(filename: str) -> str:
|
|
from torch.compiler import config as cconfig
|
|
|
|
# base of filename is already sha256 hash the source contents
|
|
key = f"{os.path.basename(filename)}:{cconfig.cache_key_tag}"
|
|
return hashlib.sha256(key.encode("utf-8")).hexdigest()
|
|
|
|
# Read the best config options from the most local cache and return it.
|
|
def _read(self) -> Optional[dict[str, JsonDataTy]]:
|
|
if local_cache := self.local_cache:
|
|
cache, key = local_cache
|
|
if best_config := cache.get(key):
|
|
if isinstance(best_config, dict):
|
|
return best_config
|
|
|
|
if remote_cache := self.remote_cache:
|
|
cache, key = remote_cache
|
|
if best_config := cache.get(key):
|
|
if isinstance(best_config, dict):
|
|
return best_config
|
|
|
|
return None
|
|
|
|
# Read the best config options from the most local cache and figure out
|
|
# which `configs` represents that option.
|
|
def read_best(
|
|
self, inductor_meta: _InductorMetaTy, configs: list[Config]
|
|
) -> Optional[Config]:
|
|
if best := self._read():
|
|
return _load_cached_autotuning(
|
|
best, self.configs_hash, configs, inductor_meta
|
|
)
|
|
return None
|
|
|
|
# Set up local filesystem caching information
|
|
def _setup_local_cache(
|
|
self, inductor_meta: _InductorMetaTy, dirname: str, cache_key: str
|
|
) -> None:
|
|
if not inductor_meta.get("autotune_local_cache", True):
|
|
return
|
|
|
|
from ..codecache import torch_key
|
|
|
|
"""
|
|
[Note: torch_key in autotune cache key]
|
|
Include torch_key() in the cache key so that different versions
|
|
of torch result in cache invalidation. This is important in case
|
|
of changes to the best_config format or other code changes that
|
|
are not backward compatible w.r.t. the cache.
|
|
"""
|
|
hasher = hashlib.sha256()
|
|
hasher.update(cache_key.encode("utf-8"))
|
|
hasher.update(torch_key())
|
|
updated_cache_key = hasher.hexdigest()
|
|
|
|
cache_filename = f"{dirname}/{updated_cache_key}.best_config"
|
|
local_cache = LocalAutotuneCache()
|
|
self.local_cache = (local_cache, cache_filename)
|
|
|
|
# Set up remote caching information
|
|
def _setup_remote_autotune_cache(
|
|
self, inductor_meta: _InductorMetaTy, cache_key: str
|
|
) -> None:
|
|
if not _should_use_remote_autotune_cache(inductor_meta):
|
|
return
|
|
|
|
if (backend_hash := inductor_meta.get("backend_hash", None)) is None:
|
|
log.debug(
|
|
"backend_hash is not passed on the inductor_meta, unable to use autotune remote cache"
|
|
)
|
|
return
|
|
assert isinstance(backend_hash, str)
|
|
|
|
from ..codecache import torch_key
|
|
|
|
is_fbcode = bool(inductor_meta.get("is_fbcode", False))
|
|
|
|
salt = "autotune-best-config-v2"
|
|
# re: torch_key - see [Note: torch_key in autotune cache key]
|
|
key = torch_key().hex() + backend_hash + self.configs_hash + salt
|
|
key = hashlib.sha256(key.encode("utf-8")).hexdigest()
|
|
|
|
remote_cache = create_cache(
|
|
key,
|
|
is_fbcode,
|
|
"FbRemoteAutotuneCache",
|
|
"RemoteAutotuneCache",
|
|
)
|
|
if not remote_cache:
|
|
return
|
|
|
|
# Save the args passed to create_cache
|
|
# in case AutotuneCache needs to be pickled
|
|
self.remote_cache_full_key = key
|
|
self.is_fbcode = is_fbcode
|
|
self.remote_cache = (remote_cache, cache_key)
|
|
|
|
# The AutotuneCache may be serialized/deserialized if we're using
|
|
# AsyncCompile worker processes to run triton compilation.
|
|
# This is because AutotuneCache instances are created on the worker
|
|
# process, but we need to run AutotuneCache.save on the parent process
|
|
# when actually doing autotuning.
|
|
def __getstate__(self) -> dict[str, Any]:
|
|
# The remote cache handles themselves may not be serializable
|
|
# So clear it and reconstruct it on setstate
|
|
remote_cache = getattr(self, "remote_cache", None)
|
|
return {
|
|
**self.__dict__,
|
|
# Save the cache_key portion
|
|
"remote_cache": remote_cache and remote_cache[1],
|
|
}
|
|
|
|
def __setstate__(self, state: dict[str, Any]) -> None:
|
|
# Reconstruct the remote cache on the parent class
|
|
self.__dict__.update(state)
|
|
if self.remote_cache is not None:
|
|
assert isinstance(self.remote_cache, str)
|
|
assert hasattr(self, "remote_cache_full_key")
|
|
assert hasattr(self, "is_fbcode")
|
|
cache_key = self.remote_cache
|
|
remote_cache = create_cache(
|
|
self.remote_cache_full_key,
|
|
self.is_fbcode,
|
|
"FbRemoteAutotuneCache",
|
|
"RemoteAutotuneCache",
|
|
)
|
|
if remote_cache is not None:
|
|
self.remote_cache = (remote_cache, cache_key)
|
|
else:
|
|
log.warning("Warning, failed to recreate remote cache after pickling")
|
|
self.remote_cache = None
|
|
|
|
# Save the config in the caches
|
|
def save(
|
|
self,
|
|
config: Config,
|
|
time_taken_ns: int,
|
|
found_by_coordesc: bool = False,
|
|
triton_cache_hash: Optional[str] = None,
|
|
) -> None:
|
|
data = {
|
|
**config.kwargs,
|
|
"num_warps": config.num_warps,
|
|
"num_stages": config.num_stages,
|
|
"configs_hash": self.configs_hash,
|
|
"found_by_coordesc": found_by_coordesc,
|
|
"time_taken_ms": time_taken_ns // 1000000, # Convert from NS to MS
|
|
"triton_cache_hash": triton_cache_hash,
|
|
}
|
|
if HAS_WARP_SPEC:
|
|
data.update(
|
|
{
|
|
"num_consumer_groups": getattr(config, "num_consumer_groups", 0),
|
|
"num_buffers_warp_spec": getattr(
|
|
config, "num_buffers_warp_spec", 0
|
|
),
|
|
}
|
|
)
|
|
|
|
if local_cache := self.local_cache:
|
|
cache, key = local_cache
|
|
cache.put(key, data)
|
|
AutotuneCacheBundler.put(key, data)
|
|
autotune_artifact_key = os.path.join(*key.split(os.sep)[-2:])
|
|
CacheArtifactManager.record_artifact(
|
|
AutotuneCacheArtifact.type(), autotune_artifact_key, data
|
|
)
|
|
|
|
if log.isEnabledFor(logging.DEBUG):
|
|
type_str = "coordesc" if found_by_coordesc else "heuristic"
|
|
log.debug("Save %s tuning result to %s", type_str, key)
|
|
|
|
if remote_cache := self.remote_cache:
|
|
cache, key = remote_cache
|
|
cache.put(key, data)
|
|
|
|
|
|
class _AutotuneCacheBundlerImpl:
|
|
"""
|
|
Caches a set of LocalAutotuneCacheBackend entries together in a single
|
|
cache.
|
|
"""
|
|
|
|
_key: str
|
|
_cache: RemoteCache[JsonDataTy]
|
|
|
|
# All known entries from LocalAutotuneCache.put()
|
|
_entries: dict[str, JsonDataTy]
|
|
|
|
def end_compile(self) -> None:
|
|
# TODO: Do we need to compute time_taken_ms and encode that somehow?
|
|
if self._entries:
|
|
self._cache.put(self._key, self._entries)
|
|
|
|
def put(self, basename: str, data: JsonDataTy) -> None:
|
|
# Do we need to worry about duplicates? We only have a single local fs
|
|
# entry - so probably not.
|
|
self._entries[basename] = data
|
|
|
|
def __init__(self, key: str, cache: RemoteCache[JsonDataTy]) -> None:
|
|
self._key = key
|
|
self._cache = cache
|
|
self._entries = {}
|
|
|
|
def sync(self) -> None:
|
|
# We don't currently use this - but we could async load starting at
|
|
# `begin_compile` and wait for the load to be finished here.
|
|
pass
|
|
|
|
@classmethod
|
|
def _should_use_bundled_autotune_remote_cache(
|
|
cls, inductor_meta: _InductorMetaTy
|
|
) -> bool:
|
|
# The bundled autotune cache is only available if you've also got local
|
|
# caching enabled (because we feed the bundled data to the local cache).
|
|
if not inductor_meta.get("autotune_local_cache", True):
|
|
return False
|
|
|
|
# Check if the we're enabled via config
|
|
if (
|
|
bundled_autotune_remote_cache := inductor_meta.get(
|
|
"bundled_autotune_remote_cache"
|
|
)
|
|
) is not None:
|
|
return bool(bundled_autotune_remote_cache)
|
|
|
|
if not cls._get_is_fbcode(inductor_meta):
|
|
return False
|
|
if torch._utils_internal.is_fb_unit_test():
|
|
return False
|
|
if inductor_meta.get("is_hip"):
|
|
return False
|
|
|
|
try:
|
|
from torch._inductor.fb.remote_cache import REMOTE_CACHE_VERSION
|
|
except ModuleNotFoundError:
|
|
return False
|
|
|
|
jk = torch._utils_internal.justknobs_getval_int(
|
|
"pytorch/remote_cache:bundled_autotune_remote_cache_version"
|
|
)
|
|
return REMOTE_CACHE_VERSION >= jk
|
|
|
|
def _load_cache(self) -> bool:
|
|
from torch._inductor import codecache
|
|
|
|
# The single key is defined on construction of the cache.
|
|
entries = self._cache.get(self._key)
|
|
if entries is None or not isinstance(entries, dict):
|
|
# We couldn't load the cache - so mark _entries as non-None so we
|
|
# store local cache values.
|
|
return False
|
|
|
|
# Go through the entries we got from the cache and save them locally.
|
|
time_saved_ns = 0
|
|
for basename, data in entries.items():
|
|
# Reconstruct the final filename (see put())
|
|
root, ext = _splitext_nodot(basename)
|
|
_, _, filename = codecache.get_path(root, ext)
|
|
if isinstance(data, dict) and (tsns := data.get("time_saved_ns")):
|
|
time_saved_ns += int(tsns) # type: ignore[arg-type]
|
|
local_cache = LocalAutotuneCache()
|
|
local_cache.put(filename, data)
|
|
|
|
codecache.add_ephemeral_timeout_increase_for_distributed(time_saved_ns)
|
|
|
|
return True
|
|
|
|
@staticmethod
|
|
def _get_is_fbcode(inductor_meta: _InductorMetaTy) -> bool:
|
|
return bool(inductor_meta.get("is_fbcode", False))
|
|
|
|
@staticmethod
|
|
def _get_backend_hash(inductor_meta: _InductorMetaTy) -> str:
|
|
backend_hash = inductor_meta["backend_hash"]
|
|
assert isinstance(backend_hash, str)
|
|
return backend_hash
|
|
|
|
|
|
class AutotuneCacheBundler:
|
|
_bundler: Optional[_AutotuneCacheBundlerImpl] = None
|
|
|
|
def __init__(self) -> None:
|
|
pass
|
|
|
|
# Call this before we start any autotune computation for an inductor python
|
|
# file. On a cache hit it copies the individual results into the local
|
|
# autotune caches.
|
|
@classmethod
|
|
def begin_compile(
|
|
cls,
|
|
inductor_meta: _InductorMetaTy,
|
|
*,
|
|
code: Optional[str] = None,
|
|
code_hash: Optional[str] = None,
|
|
) -> None:
|
|
assert cls._bundler is None
|
|
|
|
if code is not None:
|
|
assert code_hash is None, "Cannot specify both code and code_hash"
|
|
code_hash = _comment_stripped_hash(code)
|
|
assert code_hash is not None
|
|
|
|
if not _AutotuneCacheBundlerImpl._should_use_bundled_autotune_remote_cache(
|
|
inductor_meta
|
|
):
|
|
return
|
|
|
|
cache = create_cache(
|
|
"bundled-autotune-v1",
|
|
_AutotuneCacheBundlerImpl._get_is_fbcode(inductor_meta),
|
|
"FbRemoteBundledAutotuneCache",
|
|
"RemoteBundledAutotuneCache",
|
|
)
|
|
if not cache:
|
|
return
|
|
|
|
# We're starting a compilation phase. We have a cache key for the code
|
|
# we're compiling. We'll get the individual autotune bundles later (via
|
|
# self.put()). For now create the AutotuneCacheBundler and try to load
|
|
# from the cache.
|
|
|
|
salt = "bundled-autotune-best-configs-v1"
|
|
backend_hash = _AutotuneCacheBundlerImpl._get_backend_hash(inductor_meta)
|
|
# TODO: The autotune cache includes configs_hash in the key. The problem
|
|
# is that the configs_hash includes info from the individual pointwise()
|
|
# calls (size_hints, for example) which we can't know yet. I *think*
|
|
# that info is basically present in the `code_hash` (since it's a
|
|
# parameter to the pointwise decorator) - but is there other info we
|
|
# need to include from inductor_meta?
|
|
key = code_hash + backend_hash + salt
|
|
key = hashlib.sha256(key.encode("utf-8")).hexdigest()
|
|
|
|
bundler = _AutotuneCacheBundlerImpl(key, cache)
|
|
if not bundler._load_cache():
|
|
# We couldn't load from the cache - so save the data so we can store
|
|
# the saved autotunes.
|
|
cls._bundler = bundler
|
|
|
|
# If we get a cache hit don't bother saving any of the individual
|
|
# autotune results.
|
|
|
|
# Call this after all individual autotune results are finished for a
|
|
# inductor python file. If we gathered any individual results then we bundle
|
|
# those and put it into the cache.
|
|
@classmethod
|
|
def end_compile(cls) -> None:
|
|
if bundler := cls._bundler:
|
|
cls._bundler = None
|
|
bundler.end_compile()
|
|
|
|
@classmethod
|
|
def sync(cls) -> None:
|
|
if bundler := cls._bundler:
|
|
bundler.sync()
|
|
|
|
@classmethod
|
|
def put(cls, filename: str, data: JsonDataTy) -> None:
|
|
if bundler := cls._bundler:
|
|
# The filename comes in as something like
|
|
# "/tmp/tmp{random}/{aa}/{basename}.py" (where aa is
|
|
# basename[1:3]). Strip it down and make sure that it looks like a path
|
|
# we could reconstruct (because it's possible for the caller to
|
|
# customize the path).
|
|
basename = os.path.basename(filename)
|
|
|
|
# TODO: check cache_dir() vs filename, then strip dirname
|
|
bundler.put(basename, data)
|
|
|
|
|
|
# Remove the comments from the code (which include things like run ids and file
|
|
# paths) and then hash the result.
|
|
def _comment_stripped_hash(code: str) -> str:
|
|
code = re.sub(r"#.*$", "", code, count=0, flags=re.MULTILINE)
|
|
return torch._inductor.codecache.code_hash(code)
|
|
|
|
|
|
def _should_use_remote_autotune_cache(inductor_meta: _InductorMetaTy) -> bool:
|
|
if (config := inductor_meta.get("autotune_remote_cache")) is not None:
|
|
return bool(config)
|
|
if not inductor_meta.get("is_fbcode"):
|
|
return False
|
|
if torch._utils_internal.is_fb_unit_test():
|
|
return False
|
|
if inductor_meta.get("is_hip"):
|
|
return False
|
|
|
|
try:
|
|
from torch._inductor.fb.remote_cache import REMOTE_CACHE_VERSION
|
|
except ModuleNotFoundError:
|
|
return False
|
|
|
|
return REMOTE_CACHE_VERSION >= torch._utils_internal.justknobs_getval_int(
|
|
"pytorch/remote_cache:autotune_memcache_version"
|
|
)
|
|
|
|
|
|
def _load_cached_autotuning(
|
|
best_config: dict[str, JsonDataTy],
|
|
configs_hash: str,
|
|
configs: list[Config],
|
|
inductor_meta: _InductorMetaTy,
|
|
) -> Optional[Config]:
|
|
if best_config is None:
|
|
return None
|
|
if best_config.pop("configs_hash", None) != configs_hash:
|
|
return None
|
|
|
|
# Remove time taken for comparison
|
|
best_config.pop("time_taken_ms", None)
|
|
|
|
best_config.pop("triton_cache_hash", None)
|
|
|
|
if inductor_meta.get("coordinate_descent_tuning") and best_config.pop(
|
|
"found_by_coordesc", False
|
|
):
|
|
num_warps = best_config.pop("num_warps")
|
|
num_stages = best_config.pop("num_stages")
|
|
|
|
# Extract common arguments
|
|
config_args = {
|
|
"num_warps": num_warps,
|
|
"num_stages": num_stages,
|
|
}
|
|
|
|
if HAS_WARP_SPEC:
|
|
config_args.update(
|
|
{
|
|
"num_consumer_groups": best_config.pop("num_consumer_groups", 0),
|
|
"num_buffers_warp_spec": best_config.pop(
|
|
"num_buffers_warp_spec", 0
|
|
),
|
|
}
|
|
)
|
|
|
|
# Create the triton_config with the appropriate arguments
|
|
triton_config = Config(best_config, **config_args)
|
|
triton_config.found_by_coordesc = True
|
|
return triton_config
|
|
|
|
matching_configs = [
|
|
cfg
|
|
for cfg in configs
|
|
if all(val == best_config.get(key) for key, val in cfg.kwargs.items())
|
|
and cfg.num_warps == best_config.get("num_warps")
|
|
and cfg.num_stages == best_config.get("num_stages")
|
|
]
|
|
if len(matching_configs) != 1:
|
|
return None
|
|
|
|
return matching_configs[0]
|
|
|
|
|
|
class _LocalAutotuneCacheBackend(RemoteCacheBackend[bytes]):
|
|
@override
|
|
def _get(self, key: str) -> Optional[bytes]:
|
|
try:
|
|
with open(key, "rb") as fd:
|
|
return fd.read()
|
|
except FileNotFoundError:
|
|
return None
|
|
|
|
@override
|
|
def _put(self, key: str, data: bytes) -> None:
|
|
os.makedirs(os.path.dirname(key), exist_ok=True)
|
|
from torch._inductor import codecache
|
|
|
|
codecache.write_atomic(key, data)
|
|
|
|
|
|
class LocalAutotuneCache(RemoteCache[JsonDataTy]):
|
|
def __init__(self) -> None:
|
|
backend = _LocalAutotuneCacheBackend()
|
|
serde = RemoteCacheJsonSerde()
|
|
super().__init__(backend, serde)
|
|
|
|
@override
|
|
def _get(self, key: str, sample: Optional[Sample]) -> Optional[JsonDataTy]:
|
|
AutotuneCacheBundler.sync()
|
|
result = super()._get(key, sample)
|
|
if result is not None:
|
|
assert isinstance(result, dict)
|
|
# What? Why are we doing a put() here? Imagine we have a new model
|
|
# that reuses some existing kernels that have already been
|
|
# compiled. If we didn't do a `put` here (on cache hit) then the new
|
|
# model would only bundle *newly* compiled kernels, not existing
|
|
# kernels that were already compiled and cached.
|
|
AutotuneCacheBundler.put(key, result)
|
|
autotune_artifact_key = os.path.join(*key.split(os.sep)[-2:])
|
|
CacheArtifactManager.record_artifact(
|
|
AutotuneCacheArtifact.type(), autotune_artifact_key, result
|
|
)
|
|
return result
|
|
|
|
@override
|
|
def _put(self, key: str, value: JsonDataTy, sample: Optional[Sample]) -> None:
|
|
AutotuneCacheBundler.put(key, value)
|
|
super()._put(key, value, sample)
|
|
|
|
|
|
def _splitext_nodot(basename: str) -> tuple[str, str]:
|
|
root, ext = os.path.splitext(basename)
|
|
if ext:
|
|
ext = ext[1:]
|
|
return root, ext
|