mirror of
https://github.com/pytorch/pytorch.git
synced 2025-10-20 21:14:14 +08:00
Summary: This diff does a big refactor of PrecompileContext to make it considerably simpler: instead of being a CacheArtifactManager and managing a bunch of bytes, it simply stores two things: dynamo cache entries and backend cache entries. When asked, it stitches them together into PrecompileCacheEntries, which are stored by DynamoCache. This structure then allows us to register DynamoCache to the regular Megacache API, instead of having two separate APIs that are confusing. It also lets us remove the autotune cache integration, since MegaCache API will automatically store autotune cache entries. The intent here is that users who want to use caching precompile will simply be able to use torch.compiler.save_cache_artifacts as before, just with `torch.dynamo.config.caching_precompile` set to True. They can also directly interact with PrecompileContext if they wish to specifically only load Precompile entries, using PrecompileContext.create_cache_entries(). Saving single entries and such with DynamoCache still works normally. Test Plan: All existing unit tests pass. Rollback Plan: Differential Revision: D82380307 Pull Request resolved: https://github.com/pytorch/pytorch/pull/162886 Approved by: https://github.com/zhxchen17
4422 lines
154 KiB
Python
4422 lines
154 KiB
Python
#!/usr/bin/env python3
|
|
|
|
from __future__ import annotations
|
|
|
|
import argparse
|
|
import collections
|
|
import contextlib
|
|
import copy
|
|
import csv
|
|
import dataclasses
|
|
import functools
|
|
import gc
|
|
import importlib
|
|
import itertools
|
|
import json
|
|
import logging
|
|
import os
|
|
import platform
|
|
import random
|
|
import shutil
|
|
import signal
|
|
import subprocess
|
|
import sys
|
|
import tempfile
|
|
import time
|
|
import weakref
|
|
from contextlib import contextmanager
|
|
from typing import Any, NamedTuple, Optional, overload, TYPE_CHECKING, TypeVar
|
|
from unittest.mock import MagicMock
|
|
|
|
import numpy as np
|
|
import pandas as pd
|
|
import psutil
|
|
import yaml
|
|
from scipy.stats import gmean, ttest_ind
|
|
from tqdm.auto import tqdm, trange
|
|
|
|
import torch
|
|
import torch._dynamo
|
|
import torch._dynamo.utils
|
|
import torch._export
|
|
import torch.distributed
|
|
import torch.multiprocessing as mp
|
|
from torch._C import _has_cuda as HAS_CUDA, _has_xpu as HAS_XPU
|
|
from torch._C._nativert import PyModelRunner
|
|
from torch._dynamo.profiler import fx_insert_profiling, Profiler
|
|
from torch._dynamo.testing import (
|
|
dummy_fx_compile,
|
|
format_speedup,
|
|
reset_rng_state,
|
|
same,
|
|
)
|
|
from torch._logging.scribe import open_source_signpost
|
|
|
|
|
|
try:
|
|
from torch._dynamo.utils import clone_inputs, graph_break_reasons
|
|
from torch._inductor.utils import fresh_cache
|
|
except ImportError:
|
|
from _dynamo.utils import clone_inputs, graph_break_reasons
|
|
from _inductor.utils import fresh_cache
|
|
|
|
import torch._functorch.config
|
|
from torch._functorch.aot_autograd import set_model_name
|
|
from torch._inductor import config as inductor_config, metrics
|
|
from torch._subclasses.fake_tensor import FakeTensorMode
|
|
from torch.utils import _pytree as pytree
|
|
from torch.utils._pytree import tree_map, tree_map_only
|
|
|
|
|
|
try:
|
|
import torch_xla
|
|
import torch_xla.core.xla_model as xm
|
|
|
|
# This is to workaround the backward issue https://github.com/pytorch/xla/issues/4174
|
|
torch_xla._XLAC._init_computation_client()
|
|
except ImportError:
|
|
# ignore the error if torch_xla is not installed
|
|
pass
|
|
|
|
|
|
if TYPE_CHECKING:
|
|
from collections.abc import Sequence
|
|
|
|
_D = TypeVar("_D", bound=dict[str, Any])
|
|
_T = TypeVar("_T")
|
|
|
|
|
|
log = logging.getLogger(__name__)
|
|
|
|
# We are primarily interested in TF32
|
|
torch.backends.cuda.matmul.allow_tf32 = True
|
|
torch.backends.cuda.allow_fp16_bf16_reduction_math_sdp(True)
|
|
|
|
# Suppress torch.profiler spam
|
|
os.environ["KINETO_LOG_LEVEL"] = "5"
|
|
|
|
current_name = ""
|
|
current_device = ""
|
|
current_backend = ""
|
|
current_mode = ""
|
|
current_dtype = ""
|
|
current_quantization = ""
|
|
current_settings = None
|
|
current_batch_size = None
|
|
output_filename = None
|
|
disable_output = False
|
|
|
|
MAX_DOWNLOAD_ATTEMPTS = 5
|
|
|
|
|
|
class CI(NamedTuple):
|
|
backend: str # aot_eager or inductor
|
|
training: bool
|
|
dynamic: bool = False
|
|
device: str = "cuda"
|
|
|
|
|
|
CI_SKIP_OPTIMIZER = {
|
|
# TIMM
|
|
"convmixer_768_32", # accuracy
|
|
"hrnet_w18", # Stack issue in fx
|
|
# HF
|
|
"pnasnet5large", # Stack issue in fx
|
|
"MobileBertForMaskedLM", # Stack issue in fx
|
|
"MobileBertForQuestionAnswering", # Stack issue in fx
|
|
"PegasusForConditionalGeneration", # OOM
|
|
}
|
|
|
|
try:
|
|
from .fb.common import INTERNAL_CI_SKIP_DYNAMIC_BATCH_ONLY
|
|
except ImportError:
|
|
INTERNAL_CI_SKIP_DYNAMIC_BATCH_ONLY = set()
|
|
|
|
try:
|
|
from pytorch.benchmark.fb.run_utils import trace_handler
|
|
except ImportError:
|
|
trace_handler = None
|
|
|
|
|
|
CI_SKIP_DYNAMIC_BATCH_ONLY = {
|
|
"sam",
|
|
# See https://github.com/mindee/doctr/blob/f2114758d529ed8d3d0030581638f0520b6b98d8/doctr/models/detection/core.py#L89
|
|
# It iterates over the batch, which is dynamic, and dynamo chokes
|
|
# We should be able to graphbreak there.
|
|
"doctr_det_predictor",
|
|
"dlrm",
|
|
"pyhpc_isoneutral_mixing",
|
|
"pyhpc_equation_of_state",
|
|
"pyhpc_turbulent_kinetic_energy",
|
|
"detectron2_fcos_r_50_fpn",
|
|
"detectron2_fasterrcnn_r_101_c4",
|
|
"detectron2_fasterrcnn_r_101_dc5",
|
|
"detectron2_fasterrcnn_r_101_fpn",
|
|
"detectron2_fasterrcnn_r_50_c4",
|
|
"detectron2_fasterrcnn_r_50_dc5",
|
|
"detectron2_fasterrcnn_r_50_fpn",
|
|
"hf_T5_generate",
|
|
"Reformer",
|
|
"llama",
|
|
}.union(INTERNAL_CI_SKIP_DYNAMIC_BATCH_ONLY)
|
|
|
|
# These models currently fail accuracy with eager Adam optimizer
|
|
# so we use SGD when running the full benchmarks
|
|
# https://github.com/pytorch/pytorch/issues/115966
|
|
BENCHMARK_USE_SGD = {
|
|
# TorchBench
|
|
"BERT_pytorch",
|
|
"LearningToPaint",
|
|
"alexnet",
|
|
"dcgan",
|
|
"demucs",
|
|
"densenet121",
|
|
"dlrm",
|
|
"fastNLP_Bert",
|
|
"mobilenet_v2",
|
|
"phlippe_densenet",
|
|
"phlippe_resnet",
|
|
"pytorch_stargan",
|
|
"resnet18",
|
|
"shufflenet_v2_x1_0",
|
|
"speech_transformer",
|
|
"squeezenet1_1",
|
|
"stable_diffusion_text_encoder",
|
|
"timm_efficientdet",
|
|
"timm_nfnet",
|
|
"timm_resnest",
|
|
"timm_vision_transformer",
|
|
"timm_vovnet",
|
|
"vgg16",
|
|
"hf_T5", # Fails dynamic https://github.com/pytorch/pytorch/issues/115968
|
|
# HF
|
|
"AlbertForMaskedLM",
|
|
"BartForCausalLM",
|
|
"BartForConditionalGeneration",
|
|
"BlenderbotSmallForCausalLM",
|
|
"BlenderbotSmallForConditionalGeneration",
|
|
"DebertaV2ForQuestionAnswering", # eager OOM
|
|
"ElectraForCausalLM",
|
|
"M2M100ForConditionalGeneration",
|
|
"MBartForCausalLM",
|
|
"MBartForConditionalGeneration",
|
|
"OPTForCausalLM",
|
|
"PLBartForCausalLM",
|
|
"PLBartForConditionalGeneration",
|
|
"PegasusForCausalLM",
|
|
"TrOCRForCausalLM",
|
|
"XGLMForCausalLM",
|
|
# TIMM
|
|
"adv_inception_v3",
|
|
"botnet26t_256",
|
|
"cait_m36_384", # OOM
|
|
"coat_lite_mini",
|
|
"convit_base",
|
|
"dpn107",
|
|
"fbnetv3_b",
|
|
"gernet_l",
|
|
"lcnet_050",
|
|
"mixnet_l",
|
|
"res2net101_26w_4s",
|
|
"res2net50_14w_8s",
|
|
"res2next50",
|
|
"resnest101e",
|
|
"sebotnet33ts_256",
|
|
"swsl_resnext101_32x16d",
|
|
"tf_efficientnet_b0",
|
|
"ghostnet_100",
|
|
"gmixer_24_224",
|
|
"tinynet_a",
|
|
}
|
|
|
|
# These models OOM in CI
|
|
# due to the extra memory of Adam optimizer states,
|
|
# so we fall back to SGD in CI
|
|
CI_USE_SGD = {
|
|
"torchrec_dlrm",
|
|
"demucs",
|
|
"detectron2_fasterrcnn_r_101_c4",
|
|
"detectron2_fasterrcnn_r_101_dc5",
|
|
"detectron2_fasterrcnn_r_101_fpn",
|
|
"detectron2_fasterrcnn_r_50_c4",
|
|
"detectron2_fasterrcnn_r_50_dc5",
|
|
"detectron2_fasterrcnn_r_50_fpn",
|
|
"detectron2_maskrcnn_r_101_c4",
|
|
"detectron2_maskrcnn_r_101_fpn",
|
|
"detectron2_maskrcnn_r_50_c4",
|
|
"detectron2_maskrcnn_r_50_fpn",
|
|
"hf_T5_base",
|
|
"hf_clip",
|
|
"llama_v2_7b_16h",
|
|
"mobilenet_v2_quantized_qat",
|
|
"phi_1_5 resnet50_quantized_qat",
|
|
"BlenderbotForCausalLM",
|
|
"cait_m36_384",
|
|
"DALLE2_pytorch",
|
|
"moco",
|
|
"timm_efficientdet",
|
|
"ghostnet_100",
|
|
"regnety_002",
|
|
"poolformer_m36",
|
|
"inception_v3",
|
|
"tinynet_a",
|
|
"selecsls42b",
|
|
"mobilevit_s",
|
|
"pytorch_CycleGAN_and_pix2pix",
|
|
"vision_maskrcnn",
|
|
"resmlp_12_224",
|
|
"dlrm",
|
|
"resnet50",
|
|
"dm_nfnet_f0",
|
|
"pit_b_224",
|
|
"tf_mixnet_l",
|
|
}
|
|
|
|
|
|
DO_NOT_CAST_INPUTS = {"stable_diffusion"}
|
|
|
|
|
|
# Maps a benchmark model name to a list of status codes. For any listed entry, we'll
|
|
# capture TORCH_COMPILE_DEBUG logs in CI runs and preserve them (i.e., for upload) if
|
|
# the result status matches one listed.
|
|
CI_PRESERVE_COMPILE_DEBUG = {
|
|
# For example:
|
|
# "mnasnet1_0": ["fail_accuracy"],
|
|
}
|
|
|
|
|
|
@functools.lru_cache(maxsize=1)
|
|
def load_yaml_file(filename):
|
|
filepath = os.path.join(os.path.dirname(__file__), filename)
|
|
|
|
with open(filepath) as f:
|
|
data = yaml.safe_load(f)
|
|
|
|
internal_file_path = os.path.join(os.path.dirname(__file__), "fb", filename)
|
|
if os.path.exists(internal_file_path):
|
|
with open(internal_file_path) as f:
|
|
internal_data = yaml.safe_load(f)
|
|
data.update(internal_data)
|
|
|
|
def flatten(lst):
|
|
for item in lst:
|
|
if isinstance(item, list):
|
|
yield from flatten(item)
|
|
else:
|
|
yield item
|
|
|
|
def maybe_list_to_set(obj):
|
|
if isinstance(obj, dict):
|
|
return {k: maybe_list_to_set(v) for k, v in obj.items()}
|
|
if isinstance(obj, list):
|
|
return set(flatten(obj))
|
|
return obj
|
|
|
|
return maybe_list_to_set(data)
|
|
|
|
|
|
def model_specified_by_path(path_and_class_str):
|
|
return ":" in path_and_class_str
|
|
|
|
|
|
def load_model_from_path(path_and_class_str):
|
|
configs = {}
|
|
for kvstr in path_and_class_str.split(","):
|
|
k, v = kvstr.split(":")
|
|
configs[k] = v
|
|
|
|
for name in ["path", "class"]:
|
|
if name not in configs:
|
|
raise RuntimeError(
|
|
"Invalid --only arguments. Check help message for the correct format"
|
|
)
|
|
|
|
path = configs["path"]
|
|
class_name = configs["class"]
|
|
|
|
if path[:1] != "/":
|
|
raise RuntimeError(
|
|
"Use absolute path since dynamo may change the current working directory which makes using relative path tricky"
|
|
)
|
|
|
|
spec = importlib.util.spec_from_file_location("module_name", path)
|
|
module = importlib.util.module_from_spec(spec)
|
|
spec.loader.exec_module(module)
|
|
|
|
model_class = getattr(module, class_name)
|
|
assert issubclass(model_class, torch.nn.Module)
|
|
model = model_class()
|
|
assert hasattr(model, "get_example_inputs")
|
|
inputs = model.get_example_inputs()
|
|
return model, inputs
|
|
|
|
|
|
def write_outputs(filename, headers, row, upload_to_benchmark_db: bool = True):
|
|
"""
|
|
Write both CSV and JSON outputs using the original CSV output interface
|
|
"""
|
|
global disable_output
|
|
if disable_output:
|
|
return
|
|
|
|
output_csv(filename, headers, row)
|
|
if upload_to_benchmark_db:
|
|
output_json(filename, headers, row)
|
|
|
|
|
|
def output_csv(filename, headers, row):
|
|
if os.path.exists(filename):
|
|
with open(filename) as fd:
|
|
lines = list(csv.reader(fd)) or [[]]
|
|
if headers and len(headers) > len(lines[0]):
|
|
# if prior results failed the header might not be filled in yet
|
|
lines[0] = headers
|
|
else:
|
|
headers = lines[0]
|
|
else:
|
|
lines = [headers]
|
|
lines.append([(f"{x:.6f}" if isinstance(x, float) else x) for x in row])
|
|
with open(filename, "w") as fd:
|
|
writer = csv.writer(fd, lineterminator="\n")
|
|
for line in lines:
|
|
writer.writerow(list(line) + ["0"] * (len(headers) - len(line)))
|
|
|
|
|
|
def output_json(filename, headers, row):
|
|
"""
|
|
Write the result into JSON format, so that it can be uploaded to the benchmark database
|
|
to be displayed on OSS dashboard. The JSON format is defined at
|
|
https://github.com/pytorch/pytorch/wiki/How-to-integrate-with-PyTorch-OSS-benchmark-database
|
|
"""
|
|
origin = ""
|
|
if "torchbench" in filename:
|
|
origin = "torchbench"
|
|
elif "huggingface" in filename:
|
|
origin = "huggingface"
|
|
elif "timm_models" in filename:
|
|
origin = "timm_models"
|
|
|
|
extra_info = {
|
|
"device": current_device,
|
|
"quantization": current_quantization,
|
|
"batch_size": current_batch_size,
|
|
}
|
|
if current_settings:
|
|
extra_info.update(current_settings)
|
|
|
|
mapping_headers = {headers[i]: v for i, v in enumerate(row)}
|
|
with open(f"{os.path.splitext(filename)[0]}.json", "a") as f:
|
|
for header, value in mapping_headers.items():
|
|
# These headers are not metric names
|
|
if header in ("dev", "name", "batch_size"):
|
|
continue
|
|
|
|
# Make sure that the record is valid
|
|
if not current_name:
|
|
continue
|
|
|
|
record = {
|
|
"benchmark": {
|
|
"name": "TorchInductor",
|
|
"mode": current_mode,
|
|
"dtype": current_dtype,
|
|
"extra_info": extra_info,
|
|
},
|
|
"model": {
|
|
"name": current_name,
|
|
"type": "OSS model",
|
|
"backend": current_backend,
|
|
"origins": [origin],
|
|
},
|
|
}
|
|
|
|
# NB: When the metric is accuracy, its value is actually a string, i.e. pass, and
|
|
# not a number. ClickHouse doesn't support mix types atm. It has a Variant type
|
|
# https://clickhouse.com/docs/en/sql-reference/data-types/variant, but this isn't
|
|
# recommended by CH team themselves. The workaround here is to store that value
|
|
# in the extra_info field instead.
|
|
if isinstance(value, str):
|
|
record["metric"] = {
|
|
"name": header,
|
|
"extra_info": {"benchmark_values": [value]},
|
|
}
|
|
else:
|
|
record["metric"] = {
|
|
"name": header,
|
|
"benchmark_values": [value],
|
|
}
|
|
|
|
print(json.dumps(record), file=f)
|
|
|
|
|
|
def get_suite_from_model_iter_fn(model_iter_fn):
|
|
# TODO: This is a bit of a hack
|
|
suite = None
|
|
if (runner := getattr(model_iter_fn, "__self__", None)) and hasattr(
|
|
runner, "suite_name"
|
|
):
|
|
suite = runner.suite_name
|
|
return suite
|
|
|
|
|
|
def output_signpost(data, args, suite, error=None):
|
|
from torch.utils._stats import simple_call_counter
|
|
|
|
data = data.copy()
|
|
|
|
if "name" not in data:
|
|
data["name"] = current_name
|
|
|
|
if "dev" not in data:
|
|
data["dev"] = current_device
|
|
|
|
filtered_args = vars(args).copy()
|
|
# I generated this list by reading through all the configs and dropping
|
|
# ones that looked irrelevant or redundant
|
|
for k in [
|
|
"filter",
|
|
"exclude",
|
|
"exclude_exact",
|
|
"dump_raw_metrics",
|
|
"log_operator_inputs",
|
|
"distributed_master_port",
|
|
"skip_accuracy_check",
|
|
"generate_aot_autograd_stats",
|
|
"output",
|
|
"output_directory",
|
|
"disable_output",
|
|
"export_profiler_trace",
|
|
"profiler_trace_name",
|
|
"explain",
|
|
"stats",
|
|
"print_memory",
|
|
"print_compilation_time",
|
|
"print_dataframe_summary",
|
|
"print_graph_breaks",
|
|
"log_graph_breaks",
|
|
"timing",
|
|
"progress",
|
|
"timeout",
|
|
"per_process_memory_fraction",
|
|
"minify",
|
|
"verbose",
|
|
"quiet",
|
|
"print_fx",
|
|
"print_aten_ops",
|
|
"log_conv_args",
|
|
"recompile_profiler",
|
|
"find_batch_sizes",
|
|
# Redundant
|
|
"batch_size",
|
|
"batch_size_file",
|
|
"only",
|
|
"diff_branch",
|
|
"tag",
|
|
"coverage",
|
|
"overhead",
|
|
"speedup_dynamo_ts",
|
|
"speedup_fx2trt",
|
|
"speedup_fx2trt_fp16",
|
|
"accuracy",
|
|
"performance",
|
|
"tolerance",
|
|
]:
|
|
del filtered_args[k]
|
|
|
|
event_name = "unknown"
|
|
if args.accuracy:
|
|
event_name = "accuracy"
|
|
elif args.quantization:
|
|
event_name = "quantization"
|
|
elif args.performance:
|
|
event_name = "performance"
|
|
|
|
from torch._dynamo.utils import calculate_time_spent, compilation_time_metrics
|
|
|
|
wall_time_by_phase = calculate_time_spent()
|
|
|
|
open_source_signpost(
|
|
subsystem="dynamo_benchmark",
|
|
name=event_name,
|
|
parameters=json.dumps(
|
|
{
|
|
**data,
|
|
# TODO: Arguably the rest of these should be in the CSV too
|
|
"suite": suite,
|
|
# Better than using compile_times utils directly
|
|
# NB: Externally, compilation_metrics colloquially refers to
|
|
# the coarse-grained phase timings, even though internally
|
|
# they are called something else
|
|
"compilation_metrics": wall_time_by_phase,
|
|
"agg_compilation_metrics": {
|
|
k: sum(v) for k, v in compilation_time_metrics.items()
|
|
},
|
|
"detailed_compilation_metrics": compilation_time_metrics,
|
|
"simple_call_counter": simple_call_counter,
|
|
# NB: args has training vs inference
|
|
"args": filtered_args,
|
|
"error": error,
|
|
}
|
|
),
|
|
)
|
|
|
|
return wall_time_by_phase["total_wall_time"]
|
|
|
|
|
|
def nothing(f):
|
|
return f
|
|
|
|
|
|
@functools.cache
|
|
def patch_torch_manual_seed():
|
|
"""Make torch manual seed deterministic. Helps with accuracy testing."""
|
|
|
|
def deterministic_torch_manual_seed(*args, **kwargs):
|
|
from torch._C import default_generator
|
|
|
|
seed = 1337
|
|
if HAS_CUDA:
|
|
import torch.cuda
|
|
|
|
if not torch.cuda._is_in_bad_fork():
|
|
torch.cuda.manual_seed_all(seed)
|
|
if HAS_XPU:
|
|
import torch.xpu
|
|
|
|
if not torch.xpu._is_in_bad_fork():
|
|
torch.xpu.manual_seed_all(seed)
|
|
return default_generator.manual_seed(seed)
|
|
|
|
torch.manual_seed = deterministic_torch_manual_seed
|
|
|
|
|
|
def empty_gpu_cache(device):
|
|
"""
|
|
Explicitly empty gpu cache to avoid OOM in subsequent run.
|
|
"""
|
|
|
|
if device not in ["cuda", "xpu", "mps"]:
|
|
log.warning(
|
|
"Trying to call the empty_gpu_cache for device: %s, which is not in list [cuda, xpu]",
|
|
device,
|
|
)
|
|
return
|
|
|
|
getattr(torch, device).empty_cache()
|
|
|
|
|
|
def synchronize():
|
|
pass
|
|
|
|
|
|
def summarize_graph_break(filename):
|
|
"""
|
|
Sorts and de-dupes the graphs breaks on the reason string. Note that this
|
|
function is just a best effort to reduce the logging information. We could
|
|
miss some graph breaks because of de-duping. We can further refine this
|
|
function as need arises.
|
|
"""
|
|
log_file = f"{filename.rstrip('.csv')}_graph_breaks.csv"
|
|
if os.path.exists(log_file):
|
|
df = pd.read_csv(log_file)
|
|
df = df.sort_values("reason").drop_duplicates(subset="reason")
|
|
|
|
# Specialize for multi tensor sgd as reason is not identical
|
|
multi_tensor_sgd_row = df.loc[df["reason"].str.contains("_multi_tensor_sgd")]
|
|
if len(multi_tensor_sgd_row):
|
|
df = df[
|
|
~df["reason"].str.contains("_multi_tensor_sgd")
|
|
] # Drop all sgd rows
|
|
df = pd.concat(
|
|
[df, pd.DataFrame([multi_tensor_sgd_row.iloc[0]])], axis=0
|
|
) # Add back a single row
|
|
df.to_csv(f"{log_file.rstrip('.csv')}_deduped.csv", index=False)
|
|
|
|
|
|
def print_summary(filename, print_dataframe=False):
|
|
if not (filename and os.path.exists(filename)):
|
|
return
|
|
data = pd.read_csv(filename)
|
|
if "tag" in data.columns:
|
|
for tag in data.tag.unique():
|
|
if tag == "0.0000":
|
|
continue # This happens for failed runs
|
|
print(f"\nSummary for tag={tag}:")
|
|
print_summary_table(data[data.tag == tag], print_dataframe=print_dataframe)
|
|
else:
|
|
print_summary_table(data, print_dataframe=print_dataframe)
|
|
summarize_graph_break(filename)
|
|
|
|
|
|
def print_summary_table(data, print_dataframe=False):
|
|
if print_dataframe:
|
|
pd.options.display.max_rows = 1000
|
|
pd.options.display.max_columns = 1000
|
|
pd.options.display.width = 2000
|
|
print(data)
|
|
width = max(map(len, data.columns))
|
|
for col in data.columns:
|
|
try:
|
|
if col in ("dev", "name", "batch_size", "tag"):
|
|
continue
|
|
elif col in ("pct_ops", "pct_time"):
|
|
print(col.ljust(width), f"{data[col].mean():.3%}")
|
|
elif col in ("graphs", "graph_calls", "captured_ops", "total_ops"):
|
|
print(col.ljust(width), f"{data[col].mean():.3f}")
|
|
elif col in ("compilation_latency"):
|
|
print(col.ljust(width), f"mean={data[col].mean():.3f} seconds")
|
|
elif col in ("compression_ratio"):
|
|
print(col.ljust(width), f"mean={data[col].mean():.3f}x")
|
|
elif col in ("accuracy"):
|
|
pass_rate = (data[col] == "pass").mean()
|
|
print(col.ljust(width), f"pass_rate={100 * pass_rate:.2f}%")
|
|
else:
|
|
cdata = data[col]
|
|
print(
|
|
col.ljust(width),
|
|
f"gmean={gmean(cdata):.2f}x mean={cdata.mean():.3f}x",
|
|
)
|
|
except Exception:
|
|
pass
|
|
|
|
|
|
def tensor_is_on_xla(tensors):
|
|
def visit(x: torch.Tensor):
|
|
nonlocal result
|
|
if x.device.type == "xla":
|
|
result = True
|
|
|
|
result = False
|
|
tree_map_only(torch.Tensor, visit, tensors)
|
|
return result
|
|
|
|
|
|
def timed(
|
|
model,
|
|
model_iter_fn,
|
|
example_inputs,
|
|
times=1,
|
|
return_result=False,
|
|
collect_outputs=False,
|
|
batch_size=None,
|
|
):
|
|
use_xla = tensor_is_on_xla(example_inputs)
|
|
synchronize()
|
|
|
|
if batch_size:
|
|
patch_torch_manual_seed()
|
|
|
|
if use_xla:
|
|
xm.mark_step()
|
|
xm.wait_device_ops()
|
|
|
|
def vary_batch(t: torch.Tensor, new_batch_size) -> torch.Tensor:
|
|
for i, s in enumerate(t.size()):
|
|
if s == batch_size:
|
|
# If new batch is smaller, we truncate
|
|
if new_batch_size < batch_size:
|
|
indexer = [slice(None)] * t.ndim
|
|
indexer[i] = slice(0, new_batch_size)
|
|
t = t[tuple(indexer)]
|
|
# If new batch is greater, we just duplicate the last row
|
|
# over and over until we hit the desired batch size
|
|
elif new_batch_size > batch_size:
|
|
indexer = [slice(None)] * t.ndim
|
|
indexer[i] = -1
|
|
last_slice = t[tuple(indexer)].unsqueeze(i)
|
|
repeat_shape = list(t.shape)
|
|
repeat_shape[i] = new_batch_size - batch_size
|
|
padding = last_slice.expand(*repeat_shape)
|
|
t = torch.cat([t, padding], dim=i)
|
|
break
|
|
return t
|
|
|
|
time_total = 0
|
|
# Dont collect outputs to correctly measure timing
|
|
for i in range(times):
|
|
# If batch_size is 1, it too often collides with other non batch size
|
|
# dimensions resulting in errors.
|
|
if batch_size and batch_size > 1:
|
|
# Calculate new batch size by varying the original batch size by up to 20%
|
|
# Ensure it's at least greater than 1
|
|
variation = random.uniform(0.8, 1.2)
|
|
new_batch_size = max(2, int(batch_size * variation))
|
|
example_inputs = tree_map_only(
|
|
torch.Tensor, lambda x: vary_batch(x, new_batch_size), example_inputs
|
|
)
|
|
# Put this call inside the loop to reset the seed for each iteration.
|
|
# Don't include reset_rng_state() to correctly measure timing
|
|
reset_rng_state(use_xla)
|
|
t_iter_begin = time.perf_counter()
|
|
result = model_iter_fn(model, example_inputs, collect_outputs=collect_outputs)
|
|
|
|
# instead of calling sync on result_list, we should call mark_step.
|
|
# In training case, result_list may be empty, but we want to
|
|
# send all the pending graphs for compilation.
|
|
if use_xla:
|
|
# For the model running on regular torchxla (baseline), we need the
|
|
# mark step to send the accumulated graph for compilation.
|
|
#
|
|
# For the model running with dynamo/torchxla bridge, in training case,
|
|
# we need the mark step to send the optimizer graph out for
|
|
# compilation.
|
|
xm.mark_step()
|
|
t_iter_end = time.perf_counter()
|
|
time_total += t_iter_end - t_iter_begin
|
|
|
|
t_0 = time.perf_counter()
|
|
if use_xla:
|
|
xm.wait_device_ops()
|
|
synchronize()
|
|
t_1 = time.perf_counter()
|
|
time_total += t_1 - t_0
|
|
return (time_total, result) if return_result else time_total
|
|
|
|
|
|
@overload
|
|
def _normalize_bench_inputs(example_inputs: _D) -> tuple[tuple[()], _D]: ...
|
|
|
|
|
|
@overload
|
|
def _normalize_bench_inputs(
|
|
example_inputs: Sequence[_T],
|
|
) -> tuple[tuple[_T, ...], dict[str, Any]]: ...
|
|
|
|
|
|
def _normalize_bench_inputs(example_inputs):
|
|
# NOTE(bowbao): For huggingface benchmark, example_inputs are formatted as dictionary,
|
|
# and consumed like `model(**example_inputs)`.
|
|
# For other benchmarks, example_inputs are formatted as tuple and consumed
|
|
# like `model(*example_inputs)`.
|
|
if isinstance(example_inputs, dict):
|
|
return (), example_inputs
|
|
else:
|
|
return tuple(example_inputs), {}
|
|
|
|
|
|
def _register_dataclass_output_as_pytree(example_outputs) -> None:
|
|
# NOTE(angelayi): For huggingface benchmark, some example outputs are
|
|
# formatted as a dataclass which pytree cannot consume. So we want
|
|
# to register the pytree implementation here
|
|
example_outputs_flat = pytree.tree_leaves(example_outputs)
|
|
output_dataclass_types = [
|
|
type(out) for out in example_outputs_flat if dataclasses.is_dataclass(type(out))
|
|
]
|
|
for output_type in output_dataclass_types:
|
|
from torch._export.utils import register_dataclass_as_pytree_node
|
|
|
|
register_dataclass_as_pytree_node(
|
|
output_type,
|
|
serialized_type_name=f"{output_type.__module__}.{output_type.__name__}",
|
|
)
|
|
|
|
|
|
class Stats:
|
|
totals = collections.defaultdict(collections.Counter)
|
|
|
|
@classmethod
|
|
def reset_counters(cls):
|
|
for k, v in torch._dynamo.utils.counters.items():
|
|
cls.totals[k].update(v)
|
|
ok = torch._dynamo.utils.counters["frames"]["ok"]
|
|
total = torch._dynamo.utils.counters["frames"]["total"]
|
|
torch._dynamo.utils.counters.clear()
|
|
return ok, total
|
|
|
|
@classmethod
|
|
def print_summary(cls):
|
|
for k, v in sorted(cls.totals.items()):
|
|
lines = "\n ".join(map(str, v.most_common(50)))
|
|
print(f"STATS {k}\n {lines}")
|
|
|
|
@classmethod
|
|
def aot_summary(cls):
|
|
return [cls.totals["aot_autograd"]["total"], cls.totals["aot_autograd"]["ok"]]
|
|
|
|
|
|
def coverage_experiment(args, model_iter_fn, model, example_inputs):
|
|
"""
|
|
Test operator/model coverage of TorchDynamo and record statistics
|
|
taken from a profiler. This target is mainly intended to check
|
|
correctness.
|
|
|
|
Writes to ./coverage.csv
|
|
"""
|
|
profiler = Profiler()
|
|
frozen_model_iter_fn = torch._dynamo.run(model_iter_fn)
|
|
with profiler.prof:
|
|
frozen_model_iter_fn(model, example_inputs)
|
|
coverage_result = profiler.results()
|
|
write_outputs(
|
|
output_filename,
|
|
(
|
|
"dev",
|
|
"name",
|
|
"batch_size",
|
|
"graphs",
|
|
"graph_calls",
|
|
"captured_ops",
|
|
"total_ops",
|
|
"pct_ops",
|
|
"pct_time",
|
|
),
|
|
[
|
|
current_device,
|
|
current_name,
|
|
current_batch_size,
|
|
]
|
|
+ coverage_result.tocsv(),
|
|
)
|
|
return coverage_result
|
|
|
|
|
|
def speedup_experiment_fx2trt(args, model_iter_fn, model, example_inputs):
|
|
"""
|
|
Measure speedups over eager using the trt inference backend. TRT backend is based fx graph
|
|
generated by torch._dynamo.
|
|
Writes to ./speedups_fx2trt.csv
|
|
"""
|
|
return speedup_experiment(args, model_iter_fn, model, example_inputs)
|
|
|
|
|
|
# TODO: CompilerProfiler is deprecated, remove this
|
|
def recompile_profiler_experiment(args, model_iter_fn, model, example_inputs):
|
|
prof = torch._dynamo.utils.CompilerProfiler()
|
|
opt_model_iter_fn = torch._dynamo.optimize(prof, nopython=args.nopython)(
|
|
model_iter_fn
|
|
)
|
|
opt_model_iter_fn(model, example_inputs)
|
|
write_outputs(
|
|
output_filename, ["model", "profiler report"], [current_name, prof.report()]
|
|
)
|
|
met = prof.get_metrics()
|
|
guard_failures = len(met["guard_failures"])
|
|
return [guard_failures]
|
|
|
|
|
|
def randomize_input(inputs):
|
|
if isinstance(inputs, (list, tuple)):
|
|
return type(inputs)([randomize_input(x) for x in inputs])
|
|
elif isinstance(inputs, torch.Tensor):
|
|
if inputs.dtype in (torch.float32, torch.float64):
|
|
torch._dynamo.utils.counters["randomize_input"]["times"] += 1
|
|
return torch.randn_like(inputs)
|
|
elif inputs.dtype == torch.int64:
|
|
# Note: we can not simply tune integer tensors as follows
|
|
# `return torch.randint_like(inputs, high=inputs.max().item())`
|
|
# This may break some invariants between tensors.
|
|
# E.g. in embedding lookup case, one tensor is the length
|
|
# and another is an indices tensor.
|
|
return inputs
|
|
else:
|
|
raise RuntimeError(
|
|
f"randomize_input need support tensor of type {inputs.dtype}"
|
|
)
|
|
else:
|
|
raise RuntimeError(
|
|
f"randomize_input can not handle input of type {type(inputs)}"
|
|
)
|
|
|
|
|
|
def maybe_mark_step(args):
|
|
if args.trace_on_xla:
|
|
xm.mark_step()
|
|
|
|
|
|
def latency_experiment(args, model_iter_fn, model, example_inputs, mark, **kwargs):
|
|
"""
|
|
Measure latency on a specific backend.
|
|
"""
|
|
|
|
timings = np.zeros((args.repeat,), np.float64)
|
|
# if we randomize the input, we should also check the result is correct
|
|
should_randomize_input = args.randomize_input
|
|
|
|
import contextlib
|
|
|
|
from torch._inductor.utils import maybe_profile
|
|
|
|
@contextlib.contextmanager
|
|
def maybe_mark_profile(*args, **kwargs):
|
|
prof: torch.profiler.profile = kwargs.pop("p", None)
|
|
mark = kwargs.pop("mark", None)
|
|
if prof:
|
|
with torch.profiler.record_function(mark):
|
|
yield
|
|
else:
|
|
yield
|
|
|
|
times = args.iterations_per_run
|
|
|
|
with maybe_profile(args.export_profiler_trace, **args.profile_details) as p:
|
|
for rep in trange(args.repeat, desc="running benchmark"):
|
|
inputs = (
|
|
randomize_input(copy.deepcopy(example_inputs))
|
|
if should_randomize_input
|
|
else example_inputs
|
|
)
|
|
# need call mark_step to perform the computation
|
|
# on randomize_input. Otherwise the first call using the
|
|
# inputs will incur high penalty then the next one.
|
|
maybe_mark_step(args)
|
|
|
|
with maybe_mark_profile(p=p, mark=mark):
|
|
timings[rep], actual_output = timed(
|
|
model,
|
|
model_iter_fn,
|
|
inputs,
|
|
return_result=True,
|
|
times=times,
|
|
collect_outputs=args.collect_outputs,
|
|
)
|
|
|
|
if args.export_profiler_trace:
|
|
name = args.profiler_trace_name + "_" + model.name
|
|
if hasattr(args, "rank"):
|
|
name += f"_rank_{args.rank}"
|
|
name += ".json"
|
|
name = os.path.join(torch._dynamo.config.base_dir, name)
|
|
p.export_chrome_trace(name)
|
|
return timings
|
|
|
|
|
|
# TODO: This seems to be specifically triggered by torchao testing
|
|
def latency_experiment_summary(suite_name, args, model, timings, **kwargs):
|
|
median = np.median(timings, axis=0)
|
|
speedup = median[0] / median[1]
|
|
if args.dump_raw_metrics:
|
|
np.save(
|
|
f"{output_filename[:-4]}-raw_timings-{current_name}-{current_device}.npy",
|
|
timings,
|
|
)
|
|
|
|
first_headers = ["dev", "name", "batch_size"]
|
|
first_fields = [current_device, current_name, current_batch_size]
|
|
if "tag" in kwargs:
|
|
first_headers.append("tag")
|
|
first_fields.append(kwargs["tag"])
|
|
headers = first_headers + ["speedup", "abs_latency"]
|
|
row = first_fields + [float(speedup), median[1] * 1000]
|
|
msg = f"{speedup:.3f}x"
|
|
if args.baseline:
|
|
headers.extend(
|
|
[
|
|
"baseline",
|
|
"speedup_vs_baseline",
|
|
]
|
|
)
|
|
df = pd.read_csv(args.baseline)
|
|
try:
|
|
baseline_speedup = df[df["name"] == current_name]["speedup"].item()
|
|
row.extend([baseline_speedup, speedup / baseline_speedup])
|
|
msg = f"{baseline_speedup:.3f}x -> {speedup:.3f}x [{speedup / baseline_speedup:.3f}x]"
|
|
except (KeyError, ZeroDivisionError):
|
|
row.extend(
|
|
[
|
|
0.0,
|
|
0.0,
|
|
]
|
|
)
|
|
if "compilation_latency" in kwargs:
|
|
headers += [
|
|
"compilation_latency",
|
|
"compression_ratio",
|
|
"eager_peak_mem",
|
|
"dynamo_peak_mem",
|
|
]
|
|
row.append(kwargs["compilation_latency"])
|
|
row.append(kwargs["compression_ratio"])
|
|
row.append(kwargs["eager_peak_mem"])
|
|
row.append(kwargs["dynamo_peak_mem"])
|
|
|
|
if "cache_lookup_latency" in kwargs:
|
|
headers.append("cache_lookup_latency")
|
|
row.append(kwargs["cache_lookup_latency"])
|
|
|
|
if "dynamo_stats" in kwargs:
|
|
for k, v in kwargs["dynamo_stats"].items():
|
|
headers.append(k)
|
|
row.append(v)
|
|
write_outputs(
|
|
output_filename,
|
|
headers,
|
|
row,
|
|
)
|
|
c_headers, c_data = torch._dynamo.utils.compile_times(repr="csv", aggregate=True)
|
|
assert output_filename.find(".csv") > 0, (
|
|
f"expected output_filename to be a .csv, but got {output_filename}"
|
|
)
|
|
write_outputs(
|
|
output_filename[:-4] + "_compilation_metrics.csv",
|
|
first_headers + c_headers,
|
|
first_fields + c_data,
|
|
)
|
|
|
|
# Hypothetically you can use this from other places, but it's currently
|
|
# inaccessible, and when this assert fails you need to update the
|
|
# event_name here to account for the other cases you are using this
|
|
assert args.quantization is not None
|
|
output_signpost(
|
|
dict(zip(headers, row)),
|
|
args,
|
|
suite_name,
|
|
)
|
|
|
|
return msg
|
|
|
|
|
|
def speedup_experiment(args, model_iter_fn, model, example_inputs, **kwargs):
|
|
"""
|
|
Measure speedups over eager.
|
|
|
|
Writes to ./speedups.csv
|
|
"""
|
|
timings = np.zeros((args.repeat, 2), np.float64)
|
|
# if we randomize the input, we should also check the result is correct
|
|
should_randomize_input = args.randomize_input
|
|
|
|
import contextlib
|
|
|
|
from torch._inductor.utils import maybe_profile
|
|
|
|
@contextlib.contextmanager
|
|
def maybe_mark_profile(*args, **kwargs):
|
|
prof: torch.profiler.profile = kwargs.pop("p", None)
|
|
mark = kwargs.pop("mark", None)
|
|
if prof:
|
|
with torch.profiler.record_function(mark):
|
|
yield
|
|
else:
|
|
yield
|
|
|
|
times = args.iterations_per_run
|
|
|
|
# Use higher tolerance for XLA since XLA cause numerical instability when
|
|
# graph size changes
|
|
tolerance = args.xla_tolerance if args.trace_on_xla else 1e-4
|
|
torch._dynamo.config.repro_tolerance = tolerance
|
|
|
|
with maybe_profile(args.export_profiler_trace, **args.profile_details) as p:
|
|
if args.export_aot_inductor:
|
|
frozen_model_iter_fn = export_aot_inductor(
|
|
model, example_inputs, args.inductor_compile_mode
|
|
)
|
|
elif args.export_nativert:
|
|
frozen_model_iter_fn = export_nativert(model, example_inputs)
|
|
elif args.torchscript_jit_trace:
|
|
frozen_model_iter_fn = torchscript_jit_trace(model, example_inputs)
|
|
else:
|
|
if kwargs["hf_llm"]:
|
|
# If it's an llm, we want to optimize model.forward, and use
|
|
# the generate function
|
|
model.forward = torch._dynamo.run(model)
|
|
frozen_model_iter_fn = model_iter_fn
|
|
else:
|
|
frozen_model_iter_fn = torch._dynamo.run(model_iter_fn)
|
|
|
|
for rep in trange(args.repeat, desc="running benchmark"):
|
|
inputs = (
|
|
randomize_input(copy.deepcopy(example_inputs))
|
|
if should_randomize_input
|
|
else example_inputs
|
|
)
|
|
# need call mark_step to perform the computation
|
|
# on randomize_input. Otherwise the first call using the
|
|
# inputs will incur high penalty then the next one.
|
|
maybe_mark_step(args)
|
|
|
|
# interleave the runs to handle frequency scaling and load changes
|
|
with (
|
|
maybe_mark_profile(p=p, mark="expected"),
|
|
torch.compiler.set_stance("force_eager"),
|
|
):
|
|
timings[rep, 0], expected_output = timed(
|
|
model,
|
|
model_iter_fn,
|
|
inputs,
|
|
return_result=True,
|
|
times=times,
|
|
collect_outputs=args.collect_outputs,
|
|
batch_size=kwargs.get("batch_size"),
|
|
)
|
|
|
|
# call mark_step between the 2 calls to make the comparison fair.
|
|
maybe_mark_step(args)
|
|
|
|
with maybe_mark_profile(p=p, mark="actual"):
|
|
timings[rep, 1], actual_output = timed(
|
|
model,
|
|
frozen_model_iter_fn,
|
|
inputs,
|
|
return_result=True,
|
|
times=times,
|
|
collect_outputs=args.collect_outputs,
|
|
)
|
|
|
|
if args.export_profiler_trace:
|
|
name = args.profiler_trace_name + "_" + model.name
|
|
if hasattr(args, "rank"):
|
|
name += f"_rank_{args.rank}"
|
|
if args.export_perfdoctor and trace_handler:
|
|
trace_handler(name, p)
|
|
else:
|
|
name += ".json"
|
|
name = os.path.join(torch._dynamo.config.base_dir, name)
|
|
p.export_chrome_trace(name)
|
|
|
|
median = np.median(timings, axis=0)
|
|
speedup = median[0] / median[1]
|
|
if args.dump_raw_metrics:
|
|
np.save(
|
|
f"{output_filename[:-4]}-raw_timings-{current_name}-{current_device}.npy",
|
|
timings,
|
|
)
|
|
|
|
first_headers = ["dev", "name", "batch_size"]
|
|
first_fields = [current_device, current_name, current_batch_size]
|
|
if "tag" in kwargs:
|
|
first_headers.append("tag")
|
|
first_fields.append(kwargs["tag"])
|
|
headers = first_headers + ["speedup", "abs_latency"]
|
|
row = first_fields + [float(speedup), median[1] * 1000]
|
|
msg = f"{speedup:.3f}x"
|
|
if args.baseline:
|
|
headers.extend(
|
|
[
|
|
"baseline",
|
|
"speedup_vs_baseline",
|
|
]
|
|
)
|
|
df = pd.read_csv(args.baseline)
|
|
try:
|
|
baseline_speedup = df[df["name"] == current_name]["speedup"].item()
|
|
row.extend([baseline_speedup, speedup / baseline_speedup])
|
|
msg = f"{baseline_speedup:.3f}x -> {speedup:.3f}x [{speedup / baseline_speedup:.3f}x]"
|
|
except (KeyError, ZeroDivisionError):
|
|
row.extend(
|
|
[
|
|
0.0,
|
|
0.0,
|
|
]
|
|
)
|
|
if "compilation_latency" in kwargs:
|
|
headers += [
|
|
"compilation_latency",
|
|
"compression_ratio",
|
|
"eager_peak_mem",
|
|
"dynamo_peak_mem",
|
|
]
|
|
row.append(kwargs["compilation_latency"])
|
|
row.append(kwargs["compression_ratio"])
|
|
row.append(kwargs["eager_peak_mem"])
|
|
row.append(kwargs["dynamo_peak_mem"])
|
|
|
|
if "cache_lookup_latency" in kwargs:
|
|
headers.append("cache_lookup_latency")
|
|
row.append(kwargs["cache_lookup_latency"])
|
|
|
|
if "dynamo_stats" in kwargs:
|
|
for k, v in kwargs["dynamo_stats"].items():
|
|
headers.append(k)
|
|
row.append(v)
|
|
write_outputs(
|
|
output_filename,
|
|
headers,
|
|
row,
|
|
)
|
|
c_headers, c_data = torch._dynamo.utils.compile_times(repr="csv", aggregate=True)
|
|
assert output_filename.find(".csv") > 0, (
|
|
f"expected output_filename to be a .csv, but got {output_filename}"
|
|
)
|
|
write_outputs(
|
|
output_filename[:-4] + "_compilation_metrics.csv",
|
|
first_headers + c_headers,
|
|
first_fields + c_data,
|
|
)
|
|
|
|
output_signpost(
|
|
dict(zip(headers, row)),
|
|
args,
|
|
get_suite_from_model_iter_fn(model_iter_fn),
|
|
)
|
|
|
|
return msg
|
|
|
|
|
|
def overhead_experiment(*args, model_iter_fn):
|
|
"""
|
|
Measure overheads of TorchDynamo by running with no backend (only
|
|
eager+FX), and reporting speedup/slowdown over eager.
|
|
|
|
Writes to ./overheads.csv
|
|
"""
|
|
return speedup_experiment(*args, model_iter_fn)
|
|
|
|
|
|
def print_fx(gm, example_inputs):
|
|
print(gm.graph)
|
|
return gm
|
|
|
|
|
|
def print_aten_ops(gm, example_inputs):
|
|
from functorch.compile import aot_module
|
|
|
|
def trace_printer(gm, _):
|
|
print(gm.graph)
|
|
return gm
|
|
|
|
return aot_module(gm, fw_compiler=trace_printer, bw_compiler=trace_printer)
|
|
|
|
|
|
def baselines(models, model_iter_fn, example_inputs, args):
|
|
"""
|
|
Common measurement code across all baseline experiments.
|
|
"""
|
|
models = list(models)
|
|
for idx, (name, model) in enumerate(models):
|
|
if idx == 0:
|
|
result0 = model_iter_fn(model, example_inputs)
|
|
elif model is not None:
|
|
try:
|
|
result = model_iter_fn(model, example_inputs)
|
|
if same(result0, result):
|
|
continue
|
|
print(name, "is INCORRECT")
|
|
except Exception:
|
|
log.exception("error checking %s", name)
|
|
models[idx] = (name, None)
|
|
timings = np.zeros((args.repeat, len(models)), np.float64)
|
|
timings.fill(1.0e10)
|
|
for rep in range(args.repeat):
|
|
for idx, (name, model) in enumerate(models):
|
|
if model is not None:
|
|
try:
|
|
timings[rep, idx] = timed(model, model_iter_fn, example_inputs)
|
|
except Exception:
|
|
pass
|
|
pvalue = [
|
|
ttest_ind(timings[:, 0], timings[:, i]).pvalue
|
|
for i in range(1, timings.shape[1])
|
|
]
|
|
median = np.median(timings, axis=0)
|
|
speedup = median[0] / median[1:]
|
|
for idx, (name, model) in enumerate(models[1:]):
|
|
if model is None:
|
|
speedup[idx] = 0.0
|
|
result = " ".join(
|
|
[
|
|
format_speedup(s, p, m is not None)
|
|
for s, p, m in zip(speedup, pvalue, [m for n, m in models[1:]])
|
|
]
|
|
)
|
|
write_outputs(
|
|
output_filename,
|
|
("dev", "name", "batch_size") + tuple(n for n, m in models[1:]),
|
|
[current_device, current_name, current_batch_size]
|
|
+ [f"{x:.4f}" for x in speedup],
|
|
)
|
|
return result
|
|
|
|
|
|
def xla(args, model_iter_fn, model, example_inputs):
|
|
xla_dev = xm.xla_device(devkind=current_device)
|
|
model_xla = copy.deepcopy(model).to("cpu").to(device=xla_dev)
|
|
example_inputs_xla = tree_map_only(
|
|
torch.Tensor, lambda x: x.to("cpu").to(device=xla_dev), example_inputs
|
|
)
|
|
for _ in range(3): # warmup
|
|
timed(model, model_iter_fn, example_inputs)
|
|
timed(model_xla, model_iter_fn, example_inputs_xla)
|
|
timings = np.zeros((args.repeat, 2), np.float64)
|
|
timings.fill(1.0e10)
|
|
for rep in range(args.repeat):
|
|
timings[rep, 0] = timed(model, model_iter_fn, example_inputs)
|
|
timings[rep, 1] = timed(model_xla, model_iter_fn, example_inputs_xla)
|
|
|
|
pvalue = ttest_ind(timings[:, 0], timings[:, 1]).pvalue
|
|
time_baseline, time_xla = np.median(timings, axis=0)
|
|
speedup = time_baseline / time_xla
|
|
write_outputs(
|
|
output_filename,
|
|
("dev", "name", "batch_size", "speedup", "time_baseline", "time_xla"),
|
|
[
|
|
current_device,
|
|
current_name,
|
|
current_batch_size,
|
|
speedup,
|
|
time_baseline,
|
|
time_xla,
|
|
],
|
|
)
|
|
return format_speedup(speedup, pvalue)
|
|
|
|
|
|
def try_script(model, example_inputs):
|
|
try:
|
|
return torch.jit.script(model)
|
|
except Exception:
|
|
return None
|
|
|
|
|
|
def _produce_dynamic_shapes_for_export(path, x):
|
|
# mark_dynamic() is ignored for export.
|
|
# use this to produce dynamic_shapes spec instead.
|
|
from torch.export.dynamic_shapes import Dim
|
|
|
|
if not isinstance(x, torch.Tensor):
|
|
return None
|
|
return dict.fromkeys(getattr(x, "_dynamo_dynamic_indices", {}), Dim.AUTO)
|
|
|
|
|
|
class AOTInductorModelCache:
|
|
cache: dict[weakref.ref, tuple[Any, float]] = {}
|
|
|
|
@classmethod
|
|
def load(cls, model, example_inputs, mode):
|
|
import torch._inductor
|
|
from torch.export.dynamic_shapes import _combine_args, _tree_map_with_path
|
|
|
|
key = weakref.ref(model)
|
|
if key not in cls.cache:
|
|
# Register the output dataclass to pytree
|
|
example_args, example_kwargs = _normalize_bench_inputs(example_inputs)
|
|
with torch.no_grad():
|
|
# copy.deepcopy is required to prevent any surprising side-effect,
|
|
# see https://github.com/pytorch/pytorch/issues/113029
|
|
# This will cause memory stats to be overshadowed by this eager run.
|
|
# To fix that, memory stats will be reset later.
|
|
example_outputs = copy.deepcopy(model)(*example_args, **example_kwargs)
|
|
|
|
if pytree.is_namedtuple_instance(example_outputs):
|
|
typ = type(example_outputs)
|
|
pytree._register_namedtuple(
|
|
typ,
|
|
serialized_type_name=f"{typ.__module__}.{typ.__name__}",
|
|
)
|
|
else:
|
|
_register_dataclass_output_as_pytree(example_outputs)
|
|
|
|
combined_args = _combine_args(model, example_args, example_kwargs)
|
|
dynamic_shapes = _tree_map_with_path(
|
|
_produce_dynamic_shapes_for_export, combined_args
|
|
)
|
|
|
|
# delete example_outputs and reset memory stats here
|
|
del example_outputs
|
|
if current_device == "cuda":
|
|
empty_gpu_cache(current_device)
|
|
torch.cuda.reset_peak_memory_stats()
|
|
pre_clone_memory_used = torch.cuda.max_memory_allocated()
|
|
elif current_device == "hpu":
|
|
torch.hpu.reset_peak_memory_stats()
|
|
pre_clone_memory_used = torch.hpu.max_memory_allocated()
|
|
|
|
# Clone the model pre-exporting. This prevents scenarios observed in a few
|
|
# models, where the forward pass modifies model state while exporting, and
|
|
# FakeTensors are thus saved as model data members. This invalidates model
|
|
# reuse in eager mode, so it's safest to export a model clone.
|
|
model_clone = copy.deepcopy(model)
|
|
|
|
# Since CPU doesn't monitor max memory allocation, anything measuring peak
|
|
# memory will miss our transient model clone on CPU anyway.
|
|
#
|
|
# The justification for tracking this value (in order to remove it from the
|
|
# AOTInductor memory measurements) is that normal usage of AOTInductor would
|
|
# not clone the model, since the eager model would be unused post-export.
|
|
clone_memory_used = 0.0
|
|
if current_device == "cuda":
|
|
clone_memory_used = (
|
|
torch.cuda.max_memory_allocated() - pre_clone_memory_used
|
|
) / 1e9
|
|
elif current_device == "hpu":
|
|
clone_memory_used = (
|
|
torch.hpu.max_memory_allocated() - pre_clone_memory_used
|
|
) / 1e9
|
|
|
|
inductor_configs = {}
|
|
if mode == "max-autotune":
|
|
inductor_configs["max_autotune"] = True
|
|
ep = torch.export.export(
|
|
model_clone,
|
|
example_args,
|
|
example_kwargs,
|
|
dynamic_shapes=dynamic_shapes,
|
|
strict=False,
|
|
)
|
|
with torch.no_grad():
|
|
package_path = torch._inductor.aoti_compile_and_package(
|
|
ep, inductor_configs=inductor_configs
|
|
) # type: ignore[arg-type]
|
|
|
|
cls.cache[key] = (
|
|
torch._inductor.aoti_load_package(package_path),
|
|
clone_memory_used,
|
|
)
|
|
|
|
return cls.cache[key][0]
|
|
|
|
@classmethod
|
|
def get_excess_memory(cls, model) -> float:
|
|
return cls.cache.get(weakref.ref(model), (None, 0.0))[1]
|
|
|
|
|
|
class NativeRTCache:
|
|
cache: dict[weakref.ref, Any] = {}
|
|
|
|
@classmethod
|
|
def load(cls, model, example_inputs):
|
|
from torch.export.dynamic_shapes import _combine_args, _tree_map_with_path
|
|
|
|
key = weakref.ref(model)
|
|
if key not in cls.cache:
|
|
example_args, example_kwargs = _normalize_bench_inputs(example_inputs)
|
|
example_outputs = model(*example_args, **example_kwargs)
|
|
_register_dataclass_output_as_pytree(example_outputs)
|
|
|
|
combined_args = _combine_args(model, example_args, example_kwargs)
|
|
dynamic_shapes = _tree_map_with_path(
|
|
_produce_dynamic_shapes_for_export, combined_args
|
|
)
|
|
|
|
ep = torch.export.export(
|
|
model, example_args, example_kwargs, dynamic_shapes=dynamic_shapes
|
|
)
|
|
ep = ep.run_decompositions({})
|
|
with tempfile.NamedTemporaryFile(delete=False) as f:
|
|
torch.export.pt2_archive._package.package_pt2(
|
|
f, exported_programs={"forward": ep}
|
|
)
|
|
filename = f.name
|
|
cls.cache[key] = PyModelRunner(filename, "forward")
|
|
|
|
return cls.cache[key]
|
|
|
|
|
|
class JitTracedCache:
|
|
cache: dict[weakref.ref, Any] = {}
|
|
|
|
@classmethod
|
|
def load(cls, model, example_inputs):
|
|
key = weakref.ref(model)
|
|
if key not in cls.cache:
|
|
example_args, example_kwargs = _normalize_bench_inputs(example_inputs)
|
|
if example_args:
|
|
jit_traced_module = torch.jit.trace(
|
|
model, example_inputs=example_args, strict=False
|
|
)
|
|
else:
|
|
jit_traced_module = torch.jit.trace(
|
|
model, example_kwarg_inputs=example_kwargs, strict=False
|
|
)
|
|
|
|
cls.cache[key] = jit_traced_module
|
|
|
|
return cls.cache[key]
|
|
|
|
|
|
def export(model, example_inputs):
|
|
from torch.export.dynamic_shapes import _combine_args, _tree_map_with_path
|
|
|
|
example_args, example_kwargs = _normalize_bench_inputs(example_inputs)
|
|
example_outputs = model(*example_args, **example_kwargs)
|
|
_register_dataclass_output_as_pytree(example_outputs)
|
|
|
|
combined_args = _combine_args(model, example_args, example_kwargs)
|
|
dynamic_shapes = _tree_map_with_path(
|
|
_produce_dynamic_shapes_for_export, combined_args
|
|
)
|
|
|
|
# NOTE: if args.export is ever enabled for --performance mode (rather than solely
|
|
# --accuracy), we'll need to clone the model and subtract out extra memory usage, as
|
|
# done in AOTInductorModelCache.
|
|
ep = torch.export.export(
|
|
model, example_args, example_kwargs, dynamic_shapes=dynamic_shapes, strict=True
|
|
)
|
|
|
|
def opt_export(_, example_inputs):
|
|
example_args, example_kwargs = _normalize_bench_inputs(example_inputs)
|
|
return ep.module()(*example_args, **example_kwargs)
|
|
|
|
return opt_export
|
|
|
|
|
|
def export_nativert(model, example_inputs):
|
|
optimized = NativeRTCache.load(model, example_inputs)
|
|
|
|
def opt_nativert(_, example_inputs, collect_outputs=False):
|
|
example_args, example_kwargs = _normalize_bench_inputs(example_inputs)
|
|
return optimized.run(*example_args, **example_kwargs)
|
|
|
|
return opt_nativert
|
|
|
|
|
|
def export_aot_inductor(model, example_inputs, mode):
|
|
optimized = AOTInductorModelCache.load(model, example_inputs, mode)
|
|
|
|
def opt_aot_inductor(_, example_inputs, collect_outputs=False):
|
|
example_args, example_kwargs = _normalize_bench_inputs(example_inputs)
|
|
return optimized(*example_args, **example_kwargs)
|
|
|
|
return opt_aot_inductor
|
|
|
|
|
|
def torchscript_jit_trace(model, example_inputs):
|
|
optimized = JitTracedCache.load(model, example_inputs)
|
|
|
|
def opt_jit_trace(_, example_inputs, collect_outputs=False):
|
|
example_args, example_kwargs = _normalize_bench_inputs(example_inputs)
|
|
return optimized(*example_args, **example_kwargs)
|
|
|
|
return opt_jit_trace
|
|
|
|
|
|
def download_retry_decorator(download_fn):
|
|
"""
|
|
Decorator function for applying retry logic to a download function.
|
|
|
|
The wrapped function will be called up to 5 times and raises an exception if the function fails each time.
|
|
After each unsuccessful attempt, there is a delay before the next attempt, which is increased linearly with the number of tries.
|
|
|
|
Usage:
|
|
@download_retry_decorator
|
|
def download_function(model_name: str):
|
|
# download logic goes here
|
|
"""
|
|
|
|
@functools.wraps(download_fn)
|
|
def wrapper(self, *args, **kwargs) -> Any:
|
|
tries = 0
|
|
total_allowed_tries = MAX_DOWNLOAD_ATTEMPTS
|
|
while tries <= total_allowed_tries:
|
|
try:
|
|
model = download_fn(self, *args, **kwargs)
|
|
return model
|
|
except Exception as e:
|
|
tries += 1
|
|
if tries <= total_allowed_tries:
|
|
wait = tries * 30
|
|
print(
|
|
f"Failed to load model: {e}. Trying again ({tries}/{total_allowed_tries}) after {wait}s"
|
|
)
|
|
time.sleep(wait)
|
|
else:
|
|
raise RuntimeError( # noqa: B904
|
|
f"Failed to load model '{args}' with following error(s): {str(e)}."
|
|
)
|
|
|
|
return wrapper
|
|
|
|
|
|
def read_batch_size_from_file(args, filename, model_name):
|
|
batch_size = None
|
|
if os.path.exists("benchmarks"):
|
|
filename = os.path.join("benchmarks", filename)
|
|
assert os.path.exists(filename), filename
|
|
with open(filename) as f:
|
|
lines = f.readlines()
|
|
lines = [i.split(",") for i in lines if len(i.strip()) > 0]
|
|
for val in lines:
|
|
cur_name, b = val
|
|
if model_name == cur_name:
|
|
batch_size = int(b)
|
|
if batch_size is None:
|
|
log.warning("Could not find batch size for %s", model_name)
|
|
elif batch_size == -1:
|
|
raise RuntimeError(
|
|
f"Batch size is unset for {model_name} in {args.batch_size_file}"
|
|
)
|
|
print(f"batch size: {batch_size}")
|
|
return batch_size
|
|
|
|
|
|
class TimeOutException(Exception):
|
|
pass
|
|
|
|
|
|
def alarm_handler(signum, frame):
|
|
raise TimeOutException
|
|
|
|
|
|
def exit_after(s):
|
|
"""
|
|
Decorator to raise TimeoutException if the fn is taking more than s seconds
|
|
to run.
|
|
"""
|
|
|
|
def outer(fn):
|
|
def inner(*args, **kwargs):
|
|
signal.signal(signal.SIGALRM, alarm_handler)
|
|
signal.alarm(s)
|
|
try:
|
|
result = fn(*args, **kwargs)
|
|
finally:
|
|
signal.alarm(0)
|
|
return result
|
|
|
|
return inner
|
|
|
|
return outer
|
|
|
|
|
|
def get_peak_memory():
|
|
return torch.cuda.max_memory_allocated() / 10**9
|
|
|
|
|
|
def null_experiment(args, model_iter_fn, model, example_inputs):
|
|
"""
|
|
A no-op experiment useful for making sure TorchBenchark alone works properly.
|
|
"""
|
|
|
|
return []
|
|
|
|
|
|
def cast_to(dtype, model, inputs):
|
|
# cast model and inputs to fp16
|
|
if dtype == torch.float16:
|
|
model = model.half()
|
|
else:
|
|
model = model.to(dtype)
|
|
|
|
inputs = tree_map(
|
|
lambda x: x.to(dtype)
|
|
if isinstance(x, torch.Tensor) and x.is_floating_point()
|
|
else x,
|
|
inputs,
|
|
)
|
|
return model, inputs
|
|
|
|
|
|
def cast_to_bf16(model, inputs):
|
|
return cast_to(torch.bfloat16, model, inputs)
|
|
|
|
|
|
def cast_to_fp16(model, inputs):
|
|
return cast_to(torch.float16, model, inputs)
|
|
|
|
|
|
def cast_to_fp64(model, inputs):
|
|
return cast_to(torch.float64, model, inputs)
|
|
|
|
|
|
def cast_to_fp32(model, inputs):
|
|
return cast_to(torch.float32, model, inputs)
|
|
|
|
|
|
class DummyGradScaler:
|
|
def scale(self, loss):
|
|
return loss
|
|
|
|
|
|
def get_dynamo_stats():
|
|
# TODO: consider deepcopy'ing the entire counters struct and
|
|
# adding a helper to do subtraction on it
|
|
return collections.Counter(
|
|
{
|
|
"calls_captured": torch._dynamo.utils.counters["stats"]["calls_captured"],
|
|
"unique_graphs": torch._dynamo.utils.counters["stats"]["unique_graphs"],
|
|
"graph_breaks": sum(torch._dynamo.utils.counters["graph_break"].values()),
|
|
# NB: The plus removes zero counts
|
|
"unique_graph_breaks": len(+torch._dynamo.utils.counters["graph_break"]),
|
|
"autograd_captures": torch._dynamo.utils.counters["compiled_autograd"][
|
|
"captures"
|
|
],
|
|
"autograd_compiles": torch._dynamo.utils.counters["compiled_autograd"][
|
|
"compiles"
|
|
],
|
|
"cudagraph_skips": torch._dynamo.utils.counters["inductor"][
|
|
"cudagraph_skips"
|
|
],
|
|
}
|
|
)
|
|
|
|
|
|
@contextmanager
|
|
def maybe_init_distributed(should_init_distributed, rank, world_size, port="6789"):
|
|
try:
|
|
if should_init_distributed:
|
|
torch.cuda.set_device(rank)
|
|
os.environ["MASTER_ADDR"] = "localhost"
|
|
os.environ["MASTER_PORT"] = port
|
|
torch.distributed.init_process_group(
|
|
"nccl", rank=rank, world_size=world_size
|
|
)
|
|
yield
|
|
finally:
|
|
if should_init_distributed:
|
|
torch.distributed.destroy_process_group()
|
|
|
|
|
|
@contextmanager
|
|
def maybe_snapshot_memory(should_snapshot_memory, suffix):
|
|
# Enables Memory Snapshot tool for memory deep dives:
|
|
# https://pytorch.org/blog/understanding-gpu-memory-1/
|
|
try:
|
|
if should_snapshot_memory:
|
|
torch.cuda.memory._record_memory_history(max_entries=100000)
|
|
yield
|
|
finally:
|
|
if should_snapshot_memory:
|
|
try:
|
|
torch.cuda.memory._dump_snapshot(
|
|
os.path.join(
|
|
torch._dynamo.config.base_dir,
|
|
f"{output_filename.rstrip('.csv')}_{suffix}.pickle",
|
|
)
|
|
)
|
|
except Exception as e:
|
|
log.error("Failed to save memory snapshot, %s", e)
|
|
|
|
torch.cuda.memory._record_memory_history(enabled=None)
|
|
|
|
|
|
class BenchmarkRunner:
|
|
def __init__(self):
|
|
self.model_iter_fn = None
|
|
self.grad_scaler = DummyGradScaler()
|
|
self.autocast = contextlib.nullcontext
|
|
self.autocast_arg = {}
|
|
self.optimizer: Optional[torch.optim.Optimizer] = None
|
|
self._args = None
|
|
|
|
def setup_amp(self, current_device=None):
|
|
if self.args.only in self.fp32_only_models:
|
|
return
|
|
|
|
devices = [current_device] if current_device else self.args.devices
|
|
if self.args.amp:
|
|
# AMP training can lead to small loss values which can underflow
|
|
# gradient values returning in zero gradients. To solve this
|
|
# problem, PyTorch introduces GradScaler. GradScaler is a stateful
|
|
# structure, that scales the loss values to prevent underflow. Loss
|
|
# values are big at the beginning of training (therefore not
|
|
# requiring scaling), while loss value tends to be small as network
|
|
# starts getting better (requiring scaling). GradScaler manages all
|
|
# of this fine tuning, checking the gradients are turning to inf,
|
|
# discarding such batches.
|
|
|
|
# Since we are not running a long iteration, default value of
|
|
# init_scale 65536 is going to turn all gradients to inf. Therefore,
|
|
# we just use a init_scale of 2.0 for benchmarking purpose.
|
|
|
|
# Disabling Gradscaler because
|
|
# 1) Benchmark setup runs 2 iterations of fwd-bwd. So, not useful.
|
|
# 2) Current setup shares grad_scaler for eager and dynamo model,
|
|
# which is bad as Gradscaler has state and can adjust the scaling
|
|
# factor between eager and dynamo run, making accuracy check
|
|
# harder.
|
|
# self.grad_scaler = torch.amp.GradScaler(device="cuda", init_scale=2.0)
|
|
self.autocast = functools.partial(
|
|
torch.amp.autocast, device_type=devices[0]
|
|
)
|
|
if self.args.amp_dtype:
|
|
amp_dtype = (
|
|
torch.float16
|
|
if self.args.amp_dtype == "float16"
|
|
else torch.bfloat16
|
|
)
|
|
self.autocast_arg["dtype"] = amp_dtype
|
|
|
|
def init_optimizer(self, name, device, params):
|
|
if device == "cuda" and self.args.training and name not in CI_SKIP_OPTIMIZER:
|
|
if (name in CI_USE_SGD and self.args.ci) or name in BENCHMARK_USE_SGD:
|
|
self.optimizer = torch.optim.SGD(params, lr=0.01, foreach=True)
|
|
# Disable multi_tensor_sgd for benchmarking, there isn't a large performance benefit (~1%) to compiling
|
|
# this optimizer because it is a single foreach add, and increases compile time.
|
|
# After autotuning and fake tensor caching lands, we can enable, because the compile time impact will be lower.
|
|
# Fake Tensor caching: https://github.com/pytorch/pytorch/pull/113873
|
|
# Autotuning: https://github.com/pytorch/pytorch/issues/117447
|
|
self.optimizer.step = torch._dynamo.disable(self.optimizer.step)
|
|
else:
|
|
self.optimizer = torch.optim.Adam(
|
|
params, lr=0.01, capturable=True, foreach=True
|
|
)
|
|
else:
|
|
self.optimizer = None
|
|
|
|
@property
|
|
def args(self):
|
|
return self._args
|
|
|
|
@args.setter
|
|
def args(self, args):
|
|
self._args = args
|
|
|
|
@property
|
|
def skip_models(self):
|
|
return set()
|
|
|
|
@property
|
|
def skip_models_for_cuda(self):
|
|
return set()
|
|
|
|
@property
|
|
def skip_models_for_cpu(self):
|
|
return set()
|
|
|
|
@property
|
|
def skip_models_for_cpu_aarch64(self):
|
|
return set()
|
|
|
|
@property
|
|
def skip_models_for_freezing_cpu(self):
|
|
return set()
|
|
|
|
@property
|
|
def skip_models_for_freezing_cuda(self):
|
|
return set()
|
|
|
|
@property
|
|
def slow_models(self):
|
|
return set()
|
|
|
|
@property
|
|
def very_slow_models(self):
|
|
return set()
|
|
|
|
@property
|
|
def non_deterministic_models(self):
|
|
return set()
|
|
|
|
@property
|
|
def fp32_only_models(self):
|
|
return set()
|
|
|
|
@property
|
|
def force_amp_for_fp16_bf16_models(self):
|
|
return set()
|
|
|
|
@property
|
|
def force_fp16_for_bf16_models(self):
|
|
return set()
|
|
|
|
@property
|
|
def skip_not_suitable_for_training_models(self):
|
|
return set()
|
|
|
|
@property
|
|
def failing_torchinductor_models(self):
|
|
return set()
|
|
|
|
@property
|
|
def failing_fx2trt_models(self):
|
|
return set()
|
|
|
|
@property
|
|
def skip_accuracy_checks_large_models_dashboard(self):
|
|
return set()
|
|
|
|
@property
|
|
def skip_accuracy_check_as_eager_non_deterministic(self):
|
|
return set()
|
|
|
|
@property
|
|
def skip_multiprocess_models(self):
|
|
return set()
|
|
|
|
@property
|
|
def skip_models_due_to_control_flow(self):
|
|
return set()
|
|
|
|
@property
|
|
def skip_models_due_to_export_not_supported(self):
|
|
return set()
|
|
|
|
@property
|
|
def disable_cudagraph_models(self):
|
|
return set()
|
|
|
|
@property
|
|
def guard_on_nn_module_models(self):
|
|
return set()
|
|
|
|
@property
|
|
def inline_inbuilt_nn_modules_models(self):
|
|
return set()
|
|
|
|
def get_tolerance_and_cosine_flag(self, is_training, current_device, name):
|
|
raise NotImplementedError
|
|
|
|
@property
|
|
def equal_nan(self):
|
|
equal_nan = True
|
|
if self.args.float32:
|
|
equal_nan = False
|
|
return equal_nan
|
|
|
|
def use_larger_multiplier_for_smaller_tensor(self, name):
|
|
return False
|
|
|
|
def iter_models(self, args):
|
|
for model_name in self.iter_model_names(args):
|
|
for device in args.devices:
|
|
try:
|
|
yield self.load_model(
|
|
device,
|
|
model_name,
|
|
batch_size=args.batch_size,
|
|
)
|
|
except NotImplementedError:
|
|
continue # bad benchmark implementation
|
|
|
|
def deepcopy_model(self, model):
|
|
return copy.deepcopy(model)
|
|
|
|
def cast_based_on_args(self, model, example_inputs):
|
|
if self.args.float32 or self.args.only in self.fp32_only_models:
|
|
if not self.args.float32:
|
|
log.warning("Model %s supports float32 only", self.args.only)
|
|
model, example_inputs = cast_to_fp32(model, example_inputs)
|
|
elif self.args.float16:
|
|
if self.args.only in self.force_amp_for_fp16_bf16_models:
|
|
log.warning(
|
|
"Model %s does not support float16, running with amp instead",
|
|
self.args.only,
|
|
)
|
|
self.args.amp = True
|
|
self.setup_amp()
|
|
else:
|
|
model, example_inputs = cast_to_fp16(model, example_inputs)
|
|
elif self.args.bfloat16:
|
|
if self.args.only in self.force_amp_for_fp16_bf16_models:
|
|
log.warning(
|
|
"Model %s does not support bfloat16, running with amp instead",
|
|
self.args.only,
|
|
)
|
|
self.args.amp = True
|
|
self.setup_amp()
|
|
elif self.args.only in self.force_fp16_for_bf16_models:
|
|
log.warning(
|
|
"Model %s does not support bfloat16, running with float16 instead",
|
|
self.args.only,
|
|
)
|
|
model, example_inputs = cast_to_fp16(model, example_inputs)
|
|
else:
|
|
model, example_inputs = cast_to_bf16(model, example_inputs)
|
|
|
|
return model, example_inputs
|
|
|
|
def validate_model(self, model, example_inputs):
|
|
"""
|
|
Runs the eager model with example inputs to ensure that eager passes.
|
|
"""
|
|
model = self.deepcopy_model(model)
|
|
example_inputs = clone_inputs(example_inputs)
|
|
model, example_inputs = self.cast_based_on_args(model, example_inputs)
|
|
try:
|
|
self.model_iter_fn(model, example_inputs)
|
|
except Exception as e:
|
|
raise RuntimeError("Eager run failed") from e
|
|
|
|
def maybe_cast(self, model, example_inputs):
|
|
model, example_inputs = self.cast_based_on_args(model, example_inputs)
|
|
return model, example_inputs
|
|
|
|
def decay_batch_exp(self, batch_size, factor=0.5, divisor=2):
|
|
out_batch_size = batch_size * factor
|
|
if out_batch_size > divisor:
|
|
out_batch_size = (out_batch_size + 1) // divisor * divisor
|
|
else:
|
|
out_batch_size = batch_size - 1
|
|
return max(0, int(out_batch_size))
|
|
|
|
def batch_size_finder(self, device, model_name, initial_batch_size=1024):
|
|
batch_size = initial_batch_size
|
|
while batch_size >= 1:
|
|
empty_gpu_cache(current_device)
|
|
try:
|
|
device, name, model, example_inputs, _ = self.load_model(
|
|
device,
|
|
model_name,
|
|
batch_size,
|
|
)
|
|
self.model_iter_fn(model, example_inputs)
|
|
return batch_size
|
|
except RuntimeError as e:
|
|
error_str = str(e)
|
|
if "channels_last" in error_str:
|
|
break
|
|
batch_size = self.decay_batch_exp(batch_size)
|
|
return 1
|
|
|
|
def run_n_iterations(self, mod, inputs, model_iter_fn):
|
|
n = self.args.iterations
|
|
for _ in range(n - 1):
|
|
model_iter_fn(mod, inputs, collect_outputs=False)
|
|
return model_iter_fn(mod, inputs, collect_outputs=True)
|
|
|
|
@torch._disable_dynamo(recursive=True)
|
|
def optimizer_zero_grad(self, mod):
|
|
if self.optimizer is not None:
|
|
self.optimizer.zero_grad(True)
|
|
else:
|
|
mod.zero_grad(True)
|
|
|
|
def optimizer_step(self):
|
|
if self.optimizer is not None:
|
|
self.optimizer.step()
|
|
|
|
def get_benchmark_indices(self, length):
|
|
start = self._args.partition_id * (length // self._args.total_partitions)
|
|
end = (
|
|
(self._args.partition_id + 1) * (length // self._args.total_partitions)
|
|
if self._args.partition_id < self._args.total_partitions - 1
|
|
else length
|
|
)
|
|
return start, end
|
|
|
|
def get_fsdp_auto_wrap_policy(self, model_name: str):
|
|
from diffusers.models.transformer_2d import Transformer2DModel
|
|
from torchbenchmark.models.nanogpt.model import Block
|
|
from transformers.models.llama.modeling_llama import LlamaDecoderLayer
|
|
from transformers.models.t5.modeling_t5 import T5Block
|
|
from transformers.models.whisper.modeling_whisper import WhisperEncoderLayer
|
|
|
|
from torch.distributed.fsdp.wrap import (
|
|
ModuleWrapPolicy,
|
|
size_based_auto_wrap_policy,
|
|
)
|
|
|
|
# handcrafted wrap policy
|
|
MODEL_FSDP_WRAP = {
|
|
"stable_diffusion_unet": (Transformer2DModel,),
|
|
"hf_T5": (T5Block,),
|
|
"hf_T5_base": (T5Block,),
|
|
"hf_T5_large": (T5Block,),
|
|
"hf_Whisper": (WhisperEncoderLayer,),
|
|
"llama_v2_7b_16h": (LlamaDecoderLayer,),
|
|
"nanogpt": (Block,),
|
|
}
|
|
|
|
if model_name not in MODEL_FSDP_WRAP:
|
|
# default to using wrap policy based on module size
|
|
return functools.partial(
|
|
size_based_auto_wrap_policy, recurse=True, min_num_params=int(1e5)
|
|
)
|
|
|
|
return ModuleWrapPolicy(MODEL_FSDP_WRAP[model_name])
|
|
|
|
def deepcopy_and_maybe_parallelize(self, model):
|
|
model = self.deepcopy_model(model)
|
|
if self.args.ddp:
|
|
assert torch.distributed.is_available(), (
|
|
"Can't use DDP without a distributed enabled build"
|
|
)
|
|
from torch.nn.parallel import DistributedDataParallel as DDP
|
|
|
|
model = DDP(model, find_unused_parameters=True)
|
|
elif self.args.fsdp:
|
|
assert torch.distributed.is_available(), (
|
|
"Can't use FSDP without a distributed enabled build"
|
|
)
|
|
from torch.distributed.fsdp import (
|
|
FullyShardedDataParallel as FSDP,
|
|
MixedPrecision,
|
|
)
|
|
|
|
if self.args.float16:
|
|
dtype = torch.float16
|
|
elif self.args.bfloat16:
|
|
dtype = torch.bfloat16
|
|
else:
|
|
dtype = torch.float32
|
|
|
|
mp_policy = MixedPrecision(
|
|
param_dtype=dtype,
|
|
# Gradient communication precision.
|
|
reduce_dtype=dtype,
|
|
# Buffer precision.
|
|
buffer_dtype=dtype,
|
|
)
|
|
|
|
model = FSDP(
|
|
model,
|
|
use_orig_params=True,
|
|
device_id=torch.cuda.current_device()
|
|
if self.args.devices[-1] == "cuda"
|
|
else None,
|
|
mixed_precision=mp_policy,
|
|
limit_all_gathers=True,
|
|
auto_wrap_policy=self.get_fsdp_auto_wrap_policy(self.args.only),
|
|
)
|
|
return model
|
|
|
|
def check_accuracy(
|
|
self, name, model, example_inputs, optimize_ctx, experiment, tag
|
|
):
|
|
"""
|
|
Checks accuracy.
|
|
1) Collect the outputs with fp64 datatype. This is useful for error checking.
|
|
2) Checks if eager itself has variations.
|
|
"""
|
|
start_stats = get_dynamo_stats()
|
|
|
|
def record_status(accuracy_status, dynamo_start_stats):
|
|
"""
|
|
Records the status in the csv file
|
|
"""
|
|
if current_name in self.non_deterministic_models:
|
|
if accuracy_status in (
|
|
"pass",
|
|
"eager_two_runs_differ",
|
|
"fail_accuracy",
|
|
):
|
|
accuracy_status = "pass"
|
|
|
|
headers = ["dev", "name", "batch_size", "accuracy"]
|
|
fields = [current_device, current_name, current_batch_size, accuracy_status]
|
|
|
|
if tag is not None:
|
|
headers.insert(3, "tag")
|
|
fields.insert(3, tag)
|
|
|
|
o_headers = list(headers)
|
|
o_fields = list(fields)
|
|
|
|
dynamo_stats = get_dynamo_stats()
|
|
dynamo_stats.subtract(dynamo_start_stats)
|
|
for k, v in dynamo_stats.items():
|
|
headers.append(k)
|
|
fields.append(v)
|
|
|
|
total_wall_time = output_signpost(
|
|
dict(zip(o_headers, o_fields)),
|
|
self.args,
|
|
self.suite_name,
|
|
)
|
|
headers.append("compilation_latency")
|
|
fields.append(total_wall_time)
|
|
write_outputs(output_filename, headers, fields)
|
|
|
|
if self.args.print_compilation_time:
|
|
print(f"Compilation time (from dynamo_timed): {total_wall_time}")
|
|
|
|
return accuracy_status
|
|
|
|
if name in self.skip_accuracy_checks_large_models_dashboard:
|
|
return record_status("pass_due_to_skip", dynamo_start_stats=start_stats)
|
|
|
|
# Skip all accuracy check for the torchao backend
|
|
if self.args.backend == "torchao":
|
|
return record_status("pass_due_to_skip", dynamo_start_stats=start_stats)
|
|
|
|
with self.pick_grad(name, self.args.training):
|
|
# Collect the fp64 reference outputs to be used later for accuracy checking.
|
|
fp64_outputs = None
|
|
model_fp64 = None
|
|
inputs_fp64 = None
|
|
try:
|
|
model_fp64, inputs_fp64 = cast_to_fp64(
|
|
self.deepcopy_and_maybe_parallelize(model),
|
|
clone_inputs(example_inputs),
|
|
)
|
|
self.init_optimizer(name, current_device, model_fp64.parameters())
|
|
fp64_outputs = self.run_n_iterations(
|
|
model_fp64, inputs_fp64, self.model_iter_fn
|
|
)
|
|
fp64_outputs = tree_map(
|
|
lambda x: x.to(torch.float64)
|
|
if isinstance(x, torch.Tensor) and x.is_floating_point()
|
|
else x,
|
|
fp64_outputs,
|
|
)
|
|
except Exception:
|
|
log.warning(
|
|
"fp64 golden ref were not generated for %s. Setting accuracy check to cosine",
|
|
name,
|
|
)
|
|
self.args.cosine = True
|
|
fp64_outputs = None
|
|
finally:
|
|
del model_fp64, inputs_fp64
|
|
empty_gpu_cache(current_device)
|
|
|
|
tolerance, cos_similarity = self.get_tolerance_and_cosine_flag(
|
|
self.args.training, current_device, name
|
|
)
|
|
|
|
# Cast the model to float16/float32 as necessary
|
|
model, example_inputs = self.maybe_cast(model, example_inputs)
|
|
accuracy_status = "pass"
|
|
|
|
# Get results of native pytorch
|
|
reset_rng_state()
|
|
model_copy = None
|
|
try:
|
|
with torch.compiler.set_stance("force_eager"):
|
|
model_copy = self.deepcopy_and_maybe_parallelize(model)
|
|
self.init_optimizer(name, current_device, model_copy.parameters())
|
|
correct_result = self.run_n_iterations(
|
|
model_copy, clone_inputs(example_inputs), self.model_iter_fn
|
|
)
|
|
except Exception as e:
|
|
accuracy_status = (
|
|
"eager_1st_run_OOM"
|
|
if isinstance(e, torch.cuda.OutOfMemoryError)
|
|
else "eager_1st_run_fail"
|
|
)
|
|
log.exception("")
|
|
return record_status(accuracy_status, dynamo_start_stats=start_stats)
|
|
finally:
|
|
del model_copy
|
|
empty_gpu_cache(current_device)
|
|
|
|
# Rerun native pytorch
|
|
reset_rng_state()
|
|
model_copy = None
|
|
try:
|
|
with torch.compiler.set_stance("force_eager"):
|
|
model_copy = self.deepcopy_and_maybe_parallelize(model)
|
|
self.init_optimizer(name, current_device, model_copy.parameters())
|
|
correct_rerun_result = self.run_n_iterations(
|
|
model_copy, clone_inputs(example_inputs), self.model_iter_fn
|
|
)
|
|
except Exception as e:
|
|
accuracy_status = (
|
|
"eager_2nd_run_OOM"
|
|
if isinstance(e, torch.cuda.OutOfMemoryError)
|
|
else "eager_2nd_run_fail"
|
|
)
|
|
log.exception("")
|
|
return record_status(accuracy_status, dynamo_start_stats=start_stats)
|
|
finally:
|
|
del model_copy
|
|
empty_gpu_cache(current_device)
|
|
|
|
# Two eager runs should have exactly same result
|
|
is_same = True
|
|
try:
|
|
if (
|
|
name not in self.skip_accuracy_check_as_eager_non_deterministic
|
|
and not same(
|
|
correct_result,
|
|
correct_rerun_result,
|
|
fp64_ref=None,
|
|
cos_similarity=False,
|
|
tol=0,
|
|
equal_nan=self.equal_nan,
|
|
use_larger_multiplier_for_smaller_tensor=self.use_larger_multiplier_for_smaller_tensor(
|
|
name
|
|
),
|
|
)
|
|
):
|
|
is_same = False
|
|
except Exception:
|
|
# Sometimes torch.allclose may throw RuntimeError
|
|
is_same = False
|
|
|
|
if not is_same:
|
|
accuracy_status = "eager_two_runs_differ"
|
|
return record_status(accuracy_status, dynamo_start_stats=start_stats)
|
|
|
|
correct_rerun_result = None
|
|
|
|
# Run with Dynamo
|
|
reset_rng_state()
|
|
torch._dynamo.reset()
|
|
torch._dynamo.utils.counters.clear()
|
|
model_copy = None
|
|
try:
|
|
model_copy = self.deepcopy_and_maybe_parallelize(model)
|
|
self.init_optimizer(name, current_device, model_copy.parameters())
|
|
if (
|
|
self.args.export
|
|
or self.args.export_aot_inductor
|
|
or self.args.export_nativert
|
|
or self.args.torchscript_jit_trace
|
|
):
|
|
# apply export on module directly
|
|
# no need for n iterations
|
|
# the logic should be the same to self.model_iter_fn (forward_pass)
|
|
with self.autocast(**self.autocast_arg):
|
|
optimized_model_iter_fn = optimize_ctx(
|
|
model_copy, example_inputs
|
|
)
|
|
new_result = optimized_model_iter_fn(model_copy, example_inputs)
|
|
else:
|
|
optimized_model_iter_fn = optimize_ctx(self.model_iter_fn)
|
|
new_result = self.run_n_iterations(
|
|
model_copy, example_inputs, optimized_model_iter_fn
|
|
)
|
|
except Exception as e:
|
|
log.exception("")
|
|
print(
|
|
"TorchDynamo optimized model failed to run because of following error"
|
|
)
|
|
accuracy_status = (
|
|
"OOM"
|
|
if isinstance(e, torch.cuda.OutOfMemoryError)
|
|
else "fail_to_run"
|
|
)
|
|
return record_status(accuracy_status, dynamo_start_stats=start_stats)
|
|
finally:
|
|
del model_copy
|
|
|
|
if name in self.skip_accuracy_check_as_eager_non_deterministic:
|
|
return record_status("pass_due_to_skip", dynamo_start_stats=start_stats)
|
|
|
|
force_max_multiplier = False
|
|
if (
|
|
self.args.freezing
|
|
and self.args.bfloat16
|
|
and torch._dynamo.utils.counters["inductor"]["binary_folding_conv"] > 0
|
|
):
|
|
force_max_multiplier = True
|
|
|
|
try:
|
|
if self.args.training and self.args.amp:
|
|
if process_fn := self.get_output_amp_train_process_func.get(
|
|
name, None
|
|
):
|
|
correct_result = process_fn(correct_result)
|
|
new_result = process_fn(new_result)
|
|
fp64_outputs = process_fn(fp64_outputs)
|
|
|
|
if not same(
|
|
correct_result,
|
|
new_result,
|
|
fp64_outputs,
|
|
equal_nan=self.equal_nan,
|
|
use_larger_multiplier_for_smaller_tensor=self.use_larger_multiplier_for_smaller_tensor(
|
|
name
|
|
),
|
|
cos_similarity=cos_similarity,
|
|
tol=tolerance,
|
|
force_max_multiplier=force_max_multiplier,
|
|
):
|
|
is_same = False
|
|
except Exception:
|
|
# Sometimes torch.allclose may throw RuntimeError
|
|
is_same = False
|
|
|
|
if not is_same:
|
|
if self.args.skip_accuracy_check:
|
|
accuracy_status = "pass_due_to_skip"
|
|
else:
|
|
accuracy_status = "fail_accuracy"
|
|
return record_status(accuracy_status, dynamo_start_stats=start_stats)
|
|
|
|
return record_status(accuracy_status, dynamo_start_stats=start_stats)
|
|
|
|
def check_tolerance(
|
|
self, name, model, example_inputs, optimize_ctx, base_device="cpu"
|
|
):
|
|
"""
|
|
Checks tolerance based on https://pytorch.org/docs/stable/generated/torch.allclose.html.
|
|
"""
|
|
tolerance_status = "pass"
|
|
if name in self.skip_accuracy_checks_large_models_dashboard:
|
|
tolerance_status = "pass_due_to_skip"
|
|
return tolerance_status
|
|
# Cast the model to float16/float32 as necessary
|
|
model, example_inputs = self.maybe_cast(model, example_inputs)
|
|
|
|
with self.pick_grad(name, self.args.training):
|
|
# Get results of native pytorch
|
|
reset_rng_state()
|
|
model_copy = copy.deepcopy(model)
|
|
model_copy = model_copy.to(base_device)
|
|
example_inputs_copy = copy.deepcopy(example_inputs)
|
|
example_inputs_copy = tree_map(
|
|
lambda x: x.to(base_device), example_inputs_copy
|
|
)
|
|
self.init_optimizer(name, base_device, model_copy.parameters())
|
|
correct_result = self.run_n_iterations(
|
|
model_copy, example_inputs_copy, self.model_iter_fn
|
|
)
|
|
|
|
# Run with Dynamo
|
|
# Sometime CI fails with random triton compilation failure which will be skipped for now
|
|
# TODO: revisit this after switching to new Triton runtime
|
|
reset_rng_state()
|
|
torch._dynamo.reset()
|
|
try:
|
|
self.init_optimizer(name, current_device, model.parameters())
|
|
optimized_model_iter_fn = optimize_ctx(self.model_iter_fn)
|
|
new_result = self.run_n_iterations(
|
|
model_copy, example_inputs, optimized_model_iter_fn
|
|
)
|
|
except Exception:
|
|
log.exception("")
|
|
print(
|
|
"TorchDynamo optimized model failed to run because of following error"
|
|
)
|
|
return "fail_to_run"
|
|
|
|
def dump_max_mean_values(tol, ref, res):
|
|
if isinstance(ref, (list, tuple, torch.nn.ParameterList, torch.Size)):
|
|
for refi, resi in zip(ref, res):
|
|
dump_max_mean_values(tol, refi, resi)
|
|
elif isinstance(ref, dict):
|
|
for k in ref.keys():
|
|
dump_max_mean_values(tol, ref[k], res[k])
|
|
elif isinstance(ref, torch.Tensor):
|
|
res = res.to(base_device)
|
|
t = torch.abs(ref - res) / (1 + torch.abs(ref))
|
|
tol.append(t.flatten().to(torch.float32))
|
|
return tol
|
|
|
|
tol = []
|
|
dump_max_mean_values(tol, correct_result, new_result)
|
|
tol = torch.cat(tol)
|
|
tol = torch.tensor(tol)
|
|
max = torch.max(tol)
|
|
mean = torch.mean(tol)
|
|
div = torch.std(tol)
|
|
headers = ["dev", "name", "batch_size", "max", "mean", "std"]
|
|
fields = [
|
|
current_device,
|
|
current_name,
|
|
current_batch_size,
|
|
max.item(),
|
|
mean.item(),
|
|
div.item(),
|
|
]
|
|
write_outputs(output_filename, headers, fields)
|
|
return tolerance_status
|
|
|
|
def run_performance_test_non_alternate(
|
|
self, name, model, example_inputs, optimize_ctx, experiment, tag=None
|
|
):
|
|
"Run performance test in non-alternately."
|
|
assert experiment.func is latency_experiment, (
|
|
"Must run with latency_experiment."
|
|
)
|
|
|
|
def warmup(fn, model, example_inputs, mode, niters=10):
|
|
gc.collect()
|
|
peak_mem = 0
|
|
start_stats = get_dynamo_stats()
|
|
try:
|
|
if current_device == "cuda":
|
|
torch.cuda.reset_peak_memory_stats()
|
|
empty_gpu_cache(current_device)
|
|
elif current_device == "hpu":
|
|
torch.hpu.reset_peak_memory_stats()
|
|
t0 = time.perf_counter()
|
|
for _ in range(niters):
|
|
fn(model, example_inputs)
|
|
t1 = time.perf_counter()
|
|
latency = t1 - t0
|
|
if current_device == "cuda":
|
|
peak_mem = get_peak_memory()
|
|
elif current_device == "hpu":
|
|
peak_mem = torch.hpu.max_memory_allocated() / 10**9
|
|
elif current_device == "cpu":
|
|
total = psutil.virtual_memory().total
|
|
percentage = psutil.Process(os.getpid()).memory_percent()
|
|
peak_mem = percentage * total / 10**9
|
|
except Exception:
|
|
log.exception("Backend %s failed in warmup()", mode)
|
|
write_csv_when_exception(
|
|
self.args, current_name, "warmup_failed", current_device
|
|
)
|
|
output_signpost({}, self.args, self.suite_name, error="warmup_failed")
|
|
return sys.exit(-1)
|
|
dynamo_stats = get_dynamo_stats()
|
|
dynamo_stats.subtract(start_stats)
|
|
return latency, peak_mem, dynamo_stats
|
|
|
|
# Cast the model to float16/float32 as necessary
|
|
model, example_inputs = self.maybe_cast(model, example_inputs)
|
|
|
|
# Use distributed wrapping as necessary
|
|
model = self.deepcopy_and_maybe_parallelize(model)
|
|
|
|
if not hasattr(model, name):
|
|
model.name = name
|
|
self.init_optimizer(name, current_device, model.parameters())
|
|
|
|
# The self.autocast context is needed for the model we export with aot_compile,
|
|
# similar to what we do in the check_accuracy function
|
|
ctx = (
|
|
self.autocast(**self.autocast_arg)
|
|
if self.args.export_aot_inductor
|
|
else contextlib.nullcontext()
|
|
)
|
|
|
|
with self.pick_grad(name, self.args.training), ctx:
|
|
ok, total = Stats.reset_counters()
|
|
experiment_kwargs = {}
|
|
if tag is not None:
|
|
experiment_kwargs["tag"] = tag
|
|
results = []
|
|
|
|
with maybe_snapshot_memory(
|
|
self.args.snapshot_memory, f"eager_{self.args.only}"
|
|
):
|
|
eager_latency, eager_peak_mem, _ = warmup(
|
|
self.model_iter_fn, model, example_inputs, "eager"
|
|
)
|
|
if self.args.use_warm_peak_memory:
|
|
_, eager_peak_mem, _ = warmup(
|
|
self.model_iter_fn, model, example_inputs, "eager", niters=1
|
|
)
|
|
|
|
baseline_timings = experiment(
|
|
self.model_iter_fn,
|
|
model,
|
|
example_inputs,
|
|
mark="expected",
|
|
**experiment_kwargs,
|
|
)
|
|
|
|
if self.args.export_aot_inductor:
|
|
optimized_model_iter_fn = optimize_ctx
|
|
else:
|
|
optimized_model_iter_fn = optimize_ctx(self.model_iter_fn)
|
|
|
|
with maybe_snapshot_memory(
|
|
self.args.snapshot_memory, f"compiled_{self.args.only}"
|
|
):
|
|
dynamo_latency, dynamo_peak_mem, dynamo_stats = warmup(
|
|
optimized_model_iter_fn, model, example_inputs, "dynamo"
|
|
)
|
|
if self.args.use_warm_peak_memory:
|
|
_, dynamo_peak_mem, _ = warmup(
|
|
optimized_model_iter_fn,
|
|
model,
|
|
example_inputs,
|
|
"dynamo",
|
|
niters=1,
|
|
)
|
|
# If we use warm peak memory, the AOT model loading transient memory
|
|
# won't be present on the warm measurement. We only have to account for
|
|
# it when using cold memory.
|
|
elif self.args.export_aot_inductor:
|
|
dynamo_peak_mem -= AOTInductorModelCache.get_excess_memory(model)
|
|
|
|
if self.args.profile_dynamo_cache_lookup:
|
|
with torch.profiler.profile(
|
|
activities=[torch.profiler.ProfilerActivity.CPU]
|
|
) as prof:
|
|
warmup(optimized_model_iter_fn, model, example_inputs, "dynamo")
|
|
|
|
events = list(
|
|
filter(
|
|
lambda event: "TorchDynamo Cache Lookup" in event.key,
|
|
prof.key_averages(),
|
|
)
|
|
)
|
|
dynamo_cache_lookup_latency = events[0].self_cpu_time_total
|
|
|
|
compilation_time = dynamo_latency - eager_latency
|
|
compression_ratio = (
|
|
eager_peak_mem / dynamo_peak_mem if dynamo_peak_mem else 0.0
|
|
)
|
|
if self.args.print_memory:
|
|
print(
|
|
f"memory: eager: {eager_peak_mem:.2f} GB, "
|
|
f"dynamo: {dynamo_peak_mem:.2f} GB, "
|
|
f"ratio: {compression_ratio:.2f}"
|
|
)
|
|
|
|
if self.args.print_compilation_time:
|
|
print(f"Compilation time: {compilation_time:.2f}")
|
|
|
|
if experiment.func is speedup_experiment:
|
|
experiment_kwargs["compilation_latency"] = compilation_time
|
|
experiment_kwargs["compression_ratio"] = compression_ratio
|
|
experiment_kwargs["eager_peak_mem"] = eager_peak_mem
|
|
experiment_kwargs["dynamo_peak_mem"] = dynamo_peak_mem
|
|
experiment_kwargs["dynamo_stats"] = dynamo_stats
|
|
if self.args.profile_dynamo_cache_lookup:
|
|
experiment_kwargs["cache_lookup_latency"] = (
|
|
dynamo_cache_lookup_latency
|
|
)
|
|
|
|
backend_timings = experiment(
|
|
self.model_iter_fn,
|
|
model,
|
|
example_inputs,
|
|
mark="expected",
|
|
**experiment_kwargs,
|
|
)
|
|
timings = np.stack((baseline_timings, backend_timings), axis=1)
|
|
result_summary = latency_experiment_summary(
|
|
self.suite_name, self.args, model, timings, **experiment_kwargs
|
|
)
|
|
results.append(result_summary)
|
|
return " ".join(map(str, results))
|
|
|
|
def run_performance_test(
|
|
self,
|
|
name,
|
|
model,
|
|
example_inputs,
|
|
optimize_ctx,
|
|
experiment,
|
|
tag=None,
|
|
batch_size=None,
|
|
):
|
|
niters = 5
|
|
if getattr(self, "hf_llm", False):
|
|
# If we're benchmarking an llm, we want to use the generate function
|
|
self.model_iter_fn = self.generate
|
|
niters = 1
|
|
|
|
if self.args.xla:
|
|
with self.pick_grad(name, self.args.training):
|
|
return experiment(
|
|
self.model_iter_fn, *self.maybe_cast(model, example_inputs)
|
|
)
|
|
|
|
def warmup(fn, model, example_inputs, mode, niters=5):
|
|
gc.collect()
|
|
peak_mem = 0
|
|
start_stats = get_dynamo_stats()
|
|
try:
|
|
if current_device == "cuda":
|
|
torch.cuda.reset_peak_memory_stats()
|
|
empty_gpu_cache(current_device)
|
|
elif current_device == "hpu":
|
|
torch.hpu.reset_peak_memory_stats()
|
|
t0 = time.perf_counter()
|
|
for _ in range(niters):
|
|
fn(model, example_inputs)
|
|
t1 = time.perf_counter()
|
|
latency = t1 - t0
|
|
if current_device == "cuda":
|
|
peak_mem = get_peak_memory()
|
|
elif current_device == "hpu":
|
|
peak_mem = torch.hpu.max_memory_allocated() / 10**9
|
|
elif current_device == "cpu":
|
|
total = psutil.virtual_memory().total
|
|
percentage = psutil.Process(os.getpid()).memory_percent()
|
|
peak_mem = percentage * total / 10**9
|
|
except Exception:
|
|
log.exception("Backend %s failed in warmup()", mode)
|
|
write_csv_when_exception(
|
|
self.args, current_name, "warmup_failed", current_device
|
|
)
|
|
output_signpost({}, self.args, self.suite_name, error="warmup_failed")
|
|
return sys.exit(-1)
|
|
dynamo_stats = get_dynamo_stats()
|
|
dynamo_stats.subtract(start_stats)
|
|
return latency, peak_mem, dynamo_stats
|
|
|
|
# Cast the model to float16/float32 as necessary
|
|
model, example_inputs = self.maybe_cast(model, example_inputs)
|
|
|
|
# Use distributed wrapping as necessary
|
|
model = self.deepcopy_and_maybe_parallelize(model)
|
|
|
|
if not hasattr(model, name):
|
|
model.name = name
|
|
|
|
self.init_optimizer(name, current_device, model.parameters())
|
|
|
|
# The self.autocast context is needed for the model we export with aot_compile,
|
|
# similar to what we do in the check_accuracy function
|
|
ctx = (
|
|
self.autocast(**self.autocast_arg)
|
|
if self.args.export_aot_inductor
|
|
else contextlib.nullcontext()
|
|
)
|
|
|
|
with self.pick_grad(name, self.args.training), ctx:
|
|
ok, total = Stats.reset_counters()
|
|
experiment_kwargs = {}
|
|
experiment_kwargs["batch_size"] = batch_size
|
|
if tag is not None:
|
|
experiment_kwargs["tag"] = tag
|
|
results = []
|
|
with maybe_snapshot_memory(
|
|
self.args.snapshot_memory, f"eager_{self.args.only}"
|
|
):
|
|
with torch.compiler.set_stance("force_eager"):
|
|
eager_latency, eager_peak_mem, _ = warmup(
|
|
self.model_iter_fn,
|
|
copy.deepcopy(model),
|
|
example_inputs,
|
|
"eager",
|
|
niters=niters,
|
|
)
|
|
if self.args.use_warm_peak_memory:
|
|
_, eager_peak_mem, _ = warmup(
|
|
self.model_iter_fn,
|
|
copy.deepcopy(model),
|
|
example_inputs,
|
|
"eager",
|
|
niters=1,
|
|
)
|
|
|
|
if (
|
|
self.args.export_aot_inductor
|
|
or self.args.export_nativert
|
|
or self.args.torchscript_jit_trace
|
|
):
|
|
optimized_model_iter_fn = optimize_ctx
|
|
else:
|
|
if getattr(self, "hf_llm", False):
|
|
# If it's an llm, we want to optimize model.forward, and use
|
|
# the generate function
|
|
model = optimize_ctx(model)
|
|
optimized_model_iter_fn = self.model_iter_fn
|
|
else:
|
|
optimized_model_iter_fn = optimize_ctx(self.model_iter_fn)
|
|
|
|
with maybe_snapshot_memory(
|
|
self.args.snapshot_memory, f"compiled_{self.args.only}"
|
|
):
|
|
dynamo_latency, dynamo_peak_mem, dynamo_stats = warmup(
|
|
optimized_model_iter_fn, model, example_inputs, "dynamo"
|
|
)
|
|
if self.args.use_warm_peak_memory:
|
|
_, dynamo_peak_mem, _ = warmup(
|
|
optimized_model_iter_fn,
|
|
model,
|
|
example_inputs,
|
|
"dynamo",
|
|
niters=1,
|
|
)
|
|
# If we use warm peak memory, the AOT model loading transient memory
|
|
# won't be present on the warm measurement. We only have to account for
|
|
# it when using cold memory.
|
|
elif self.args.export_aot_inductor:
|
|
dynamo_peak_mem -= AOTInductorModelCache.get_excess_memory(model)
|
|
|
|
if self.args.profile_dynamo_cache_lookup:
|
|
with torch.profiler.profile(
|
|
activities=[torch.profiler.ProfilerActivity.CPU]
|
|
) as prof:
|
|
warmup(optimized_model_iter_fn, model, example_inputs, "dynamo")
|
|
|
|
events = list(
|
|
filter(
|
|
lambda event: "TorchDynamo Cache Lookup" in event.key,
|
|
prof.key_averages(),
|
|
)
|
|
)
|
|
dynamo_cache_lookup_latency = events[0].self_cpu_time_total
|
|
|
|
compilation_time = dynamo_latency - eager_latency
|
|
compression_ratio = (
|
|
eager_peak_mem / dynamo_peak_mem if dynamo_peak_mem else 0.0
|
|
)
|
|
if self.args.print_memory:
|
|
print(
|
|
f"memory: eager: {eager_peak_mem:.2f} GB, "
|
|
f"dynamo: {dynamo_peak_mem:.2f} GB, "
|
|
f"ratio: {compression_ratio:.2f}"
|
|
)
|
|
|
|
if self.args.print_compilation_time:
|
|
print(f"Compilation time: {compilation_time:.2f}")
|
|
|
|
if experiment.func is speedup_experiment:
|
|
experiment_kwargs["compilation_latency"] = compilation_time
|
|
experiment_kwargs["compression_ratio"] = compression_ratio
|
|
experiment_kwargs["eager_peak_mem"] = eager_peak_mem
|
|
experiment_kwargs["dynamo_peak_mem"] = dynamo_peak_mem
|
|
experiment_kwargs["dynamo_stats"] = dynamo_stats
|
|
if self.args.profile_dynamo_cache_lookup:
|
|
experiment_kwargs["cache_lookup_latency"] = (
|
|
dynamo_cache_lookup_latency
|
|
)
|
|
|
|
if experiment.func is coverage_experiment:
|
|
ok, total = Stats.reset_counters()
|
|
results = []
|
|
# run with torch._dynamo few times to populate the cache
|
|
for _ in range(3):
|
|
optimized_model_iter_fn(model, example_inputs)
|
|
_, frames_second_pass = Stats.reset_counters() # should be 0
|
|
if frames_second_pass > 0:
|
|
optimized_model_iter_fn(model, example_inputs)
|
|
_, frames_third_pass = Stats.reset_counters() # should be 0
|
|
else:
|
|
frames_third_pass = 0
|
|
|
|
results.append(
|
|
f"{ok:3}/{total:3} +{frames_third_pass} frames {compilation_time:3.0f}s"
|
|
)
|
|
|
|
experiment_kwargs["hf_llm"] = getattr(self, "hf_llm", False)
|
|
|
|
results.append(
|
|
experiment(
|
|
self.model_iter_fn, model, example_inputs, **experiment_kwargs
|
|
)
|
|
)
|
|
return " ".join(map(str, results))
|
|
|
|
def minify_model(
|
|
self,
|
|
name,
|
|
model,
|
|
example_inputs,
|
|
optimize_ctx,
|
|
experiment,
|
|
tag,
|
|
):
|
|
log.info("Minifying %s...", name)
|
|
os.environ["TORCH_COMPILE_DEBUG"] = "1"
|
|
os.environ["TORCHDYNAMO_REPRO_AFTER"] = "dynamo"
|
|
os.environ["TORCHDYNAMO_REPRO_LEVEL"] = "4"
|
|
|
|
self.check_accuracy(name, model, example_inputs, optimize_ctx, experiment, tag)
|
|
|
|
if self.args.output_directory:
|
|
repro_dir = self.args.output_directory
|
|
else:
|
|
repro_dir = torch._dynamo.config.base_dir
|
|
|
|
try:
|
|
shutil.move("repro.py", f"{repro_dir}/{name}_repro.py")
|
|
except OSError:
|
|
log.error("Could not find repro script for model %s", name)
|
|
else:
|
|
log.info(
|
|
"Repro script for model %s with minified graph saved to %s",
|
|
name,
|
|
repro_dir,
|
|
)
|
|
|
|
def maybe_preserve_compile_debug(self, name, status):
|
|
if (
|
|
name in CI_PRESERVE_COMPILE_DEBUG
|
|
and status in CI_PRESERVE_COMPILE_DEBUG[name]
|
|
):
|
|
src_dir = torch._dynamo.utils.get_debug_dir()
|
|
if os.path.isdir(src_dir):
|
|
dbg_dir = os.path.join(
|
|
os.getcwd(), "test", "debug", "torch_compile_debug"
|
|
)
|
|
dst_dir = os.path.join(dbg_dir, os.path.basename(src_dir))
|
|
try:
|
|
os.makedirs(dbg_dir, exist_ok=True)
|
|
os.rename(src_dir, dst_dir)
|
|
log.warning("Moved %s to %s", src_dir, dst_dir)
|
|
except OSError:
|
|
log.exception("Failed to preserve %s", src_dir)
|
|
|
|
def run_one_model(
|
|
self,
|
|
name,
|
|
model,
|
|
example_inputs,
|
|
optimize_ctx,
|
|
experiment,
|
|
explain=False,
|
|
tag=None,
|
|
batch_size=None,
|
|
):
|
|
mode = "train" if self.args.training else "eval"
|
|
msg = f"{current_device:4} {mode:5} {current_name:34} "
|
|
if tag:
|
|
msg += f" {tag:26}"
|
|
print(msg, flush=True)
|
|
|
|
start_stats = get_dynamo_stats()
|
|
|
|
if self.args.accuracy:
|
|
status = self.check_accuracy(
|
|
name, model, example_inputs, optimize_ctx, experiment, tag
|
|
)
|
|
print(status)
|
|
if status == "fail_accuracy" and self.args.minify:
|
|
self.minify_model(
|
|
name, model, example_inputs, optimize_ctx, experiment, tag
|
|
)
|
|
elif self.args.tolerance:
|
|
status = self.check_tolerance(name, model, example_inputs, optimize_ctx)
|
|
print(status)
|
|
elif self.args.performance:
|
|
if self.args.backend == "torchao":
|
|
status = self.run_performance_test_non_alternate(
|
|
name, model, example_inputs, optimize_ctx, experiment, tag
|
|
)
|
|
else:
|
|
status = self.run_performance_test(
|
|
name,
|
|
model,
|
|
example_inputs,
|
|
optimize_ctx,
|
|
experiment,
|
|
tag,
|
|
batch_size=batch_size,
|
|
)
|
|
print(status)
|
|
empty_gpu_cache(current_device)
|
|
|
|
self.maybe_preserve_compile_debug(name, status)
|
|
|
|
if self.args.timing:
|
|
from torch._dynamo.utils import op_count, print_time_report
|
|
from torch.utils._stats import simple_call_counter
|
|
|
|
print_time_report()
|
|
stats = "STATS: "
|
|
stats = stats + " | ".join(
|
|
itertools.chain(
|
|
[f"call_* op count: {op_count}"],
|
|
(f"{key}:{value}" for key, value in simple_call_counter.items()),
|
|
)
|
|
)
|
|
print(stats)
|
|
stats = get_dynamo_stats()
|
|
stats.subtract(start_stats)
|
|
|
|
if explain:
|
|
print(
|
|
f"Dynamo produced {stats['unique_graphs']} graphs "
|
|
f"covering {stats['calls_captured']} ops with "
|
|
f"{stats['graph_breaks']} graph breaks ({stats['unique_graph_breaks']} unique)"
|
|
)
|
|
|
|
if explain or self.args.log_graph_breaks or self.args.print_graph_breaks:
|
|
filename = f"{output_filename.rstrip('.csv')}_graph_breaks.csv"
|
|
|
|
def add_double_quotes(x):
|
|
# Delimiter because reason could have comma
|
|
return f'"{x}"'
|
|
|
|
for graph_break in graph_break_reasons:
|
|
reason = add_double_quotes(graph_break.reason)
|
|
user_stack = add_double_quotes(
|
|
", ".join([str(x) for x in graph_break.user_stack])
|
|
)
|
|
|
|
# NB: Don't upload them to the benchmark database as they are debugging
|
|
# information. There are also around a million records a day which is
|
|
# wasteful to store
|
|
write_outputs(
|
|
filename,
|
|
["model", "reason", "user_stack"],
|
|
[current_name, reason, user_stack],
|
|
False,
|
|
)
|
|
|
|
if self.args.stats:
|
|
Stats.print_summary()
|
|
|
|
|
|
def help(fn):
|
|
return fn.__doc__
|
|
|
|
|
|
diff_branch_default = "DIFF-BRANCH-DEFAULT"
|
|
|
|
|
|
def should_diff_branch(args):
|
|
return args.diff_branch != diff_branch_default
|
|
|
|
|
|
def parse_args(args=None):
|
|
parser = argparse.ArgumentParser()
|
|
parser.add_argument(
|
|
"--filter", "-k", action="append", help="filter benchmarks with regexp"
|
|
)
|
|
parser.add_argument(
|
|
"--exclude", "-x", action="append", help="filter benchmarks with regexp"
|
|
)
|
|
parser.add_argument(
|
|
"--exclude-exact", action="append", help="filter benchmarks with exact match"
|
|
)
|
|
parser.add_argument(
|
|
"--total-partitions",
|
|
type=int,
|
|
default=1,
|
|
choices=range(1, 16),
|
|
help="Total number of partitions we want to divide the benchmark suite into",
|
|
)
|
|
parser.add_argument(
|
|
"--partition-id",
|
|
type=int,
|
|
default=0,
|
|
help="ID of the benchmark suite partition to be run. Used to divide CI tasks",
|
|
)
|
|
parser.add_argument(
|
|
"--devices", "--device", "-d", action="append", help="cpu, cuda or hpu"
|
|
)
|
|
parser.add_argument("--device-index", help="CUDA device index")
|
|
parser.add_argument(
|
|
"--repeat", "-n", type=int, default=30, help="number of timing runs"
|
|
)
|
|
iterations_per_run_help = """
|
|
Run this may iterations for each time measurement. This is mainly used for
|
|
XLA training. We want to run multiple iterations per measurement so the
|
|
tracing and computation for different iterations can overlap with each
|
|
other. This makes sure we have an accurate xla baseline.
|
|
"""
|
|
parser.add_argument(
|
|
"--iterations-per-run", type=int, default=1, help=iterations_per_run_help
|
|
)
|
|
parser.add_argument(
|
|
"--randomize-input",
|
|
action="store_true",
|
|
help="Whether to randomize the input values. Dimensions will be kept the same.",
|
|
)
|
|
parser.add_argument(
|
|
"--threads",
|
|
"-t",
|
|
type=int,
|
|
help="number of threads to use for eager and inductor",
|
|
)
|
|
parser.add_argument(
|
|
"--nopython", action="store_true", help="Turn graph breaks into errors"
|
|
)
|
|
parser.add_argument(
|
|
"--no-skip",
|
|
action="store_true",
|
|
help="run models that are in the global SKIP list",
|
|
)
|
|
parser.add_argument(
|
|
"--prims-nvfuser", action="store_true", help="user prims + nvfuser backend"
|
|
)
|
|
parser.add_argument(
|
|
"--dump-raw-metrics",
|
|
action="store_true",
|
|
help="dump raw timing metrics from speedup experiment",
|
|
)
|
|
parser.add_argument(
|
|
"--log-operator-inputs",
|
|
action="store_true",
|
|
default=False,
|
|
)
|
|
parser.add_argument(
|
|
"--channels-last",
|
|
action="store_true",
|
|
default=False,
|
|
help="use channels last format",
|
|
)
|
|
parser.add_argument(
|
|
"--batch-size", "--batch_size", type=int, help="batch size for benchmarking"
|
|
)
|
|
parser.add_argument(
|
|
"--iterations", type=int, default=2, help="how many iterations to run"
|
|
)
|
|
parser.add_argument(
|
|
"--batch-size-file", type=str, help="String to load batch size from"
|
|
)
|
|
parser.add_argument("--cosine", action="store_true", help="use cosine similarity")
|
|
parser.add_argument(
|
|
"--freezing", action="store_true", help="turn on freezing", default=False
|
|
)
|
|
parser.add_argument(
|
|
"--inductor-config",
|
|
"-c",
|
|
action="append",
|
|
help="key=value in torch._inductor.config",
|
|
)
|
|
parser.add_argument(
|
|
"--ci", action="store_true", help="Flag to tell that its a CI run"
|
|
)
|
|
parser.add_argument(
|
|
"--dashboard", action="store_true", help="Flag to tell that its a Dashboard run"
|
|
)
|
|
parser.add_argument(
|
|
"--skip-fp64-check", action="store_true", help="skip accuracy check using fp64"
|
|
)
|
|
parser.add_argument(
|
|
"--fast", "-f", action="store_true", help="skip slow benchmarks"
|
|
)
|
|
parser.add_argument(
|
|
"--only",
|
|
help="""Run just one model from torchbench. Or
|
|
specify the path and class name of the model in format like:
|
|
--only=path:<MODEL_FILE_PATH>,class:<CLASS_NAME>
|
|
|
|
Due to the fact that dynamo changes current working directory,
|
|
the path should be an absolute path.
|
|
|
|
The class should have a method get_example_inputs to return the inputs
|
|
for the model. An example looks like
|
|
```
|
|
class LinearModel(nn.Module):
|
|
def __init__(self):
|
|
super().__init__()
|
|
self.linear = nn.Linear(10, 10)
|
|
|
|
def forward(self, x):
|
|
return self.linear(x)
|
|
|
|
def get_example_inputs(self):
|
|
return (torch.randn(2, 10),)
|
|
```
|
|
""",
|
|
)
|
|
parser.add_argument(
|
|
"--multiprocess",
|
|
action="store_true",
|
|
help="Create n processes based on the number of devices (distributed use case).",
|
|
)
|
|
parser.add_argument(
|
|
"--ddp",
|
|
action="store_true",
|
|
help="Wraps model in DDP before running it, and uses dynamo DDPOptmizer (graph breaks) by default.",
|
|
)
|
|
parser.add_argument(
|
|
"--fsdp",
|
|
action="store_true",
|
|
help="""Wraps model in FSDP before running it.
|
|
Doesn't recursively wrap, mainly useful for checking dynamo UnspecNNModule compatibility
|
|
""",
|
|
)
|
|
parser.add_argument(
|
|
"--optimize-ddp-mode",
|
|
type=str,
|
|
default="ddp_optimizer",
|
|
help="Specify the DDP optimization mode -- the value of torch._dynamo.config.optimize_ddp.",
|
|
)
|
|
parser.add_argument(
|
|
"--distributed-master-port",
|
|
default="6789",
|
|
help="Port to bind for for torch.distributed. Use the default unless it's conflicting with another user",
|
|
)
|
|
parser.add_argument(
|
|
"--dynamic-shapes",
|
|
action="store_true",
|
|
help="Runs a dynamic shapes version of the benchmark, if available.",
|
|
)
|
|
parser.add_argument(
|
|
"--propagate-real-tensors",
|
|
action="store_true",
|
|
help="Capture as much data dependent as you can by unsoundly propagating real tensors",
|
|
)
|
|
parser.add_argument(
|
|
"--dynamic-batch-only",
|
|
action="store_true",
|
|
help="Only assume batch dimension is dynamic. Implies --dynamic-shapes",
|
|
)
|
|
parser.add_argument(
|
|
"--specialize-int", action="store_true", help="Run with specialize_int=True."
|
|
)
|
|
parser.add_argument(
|
|
"--use-eval-mode",
|
|
action="store_true",
|
|
help="sets model.eval() to reduce randomness",
|
|
)
|
|
parser.add_argument(
|
|
"--skip-accuracy-check",
|
|
action="store_true",
|
|
help="keeps running even when accuracy fails",
|
|
)
|
|
parser.add_argument(
|
|
"--generate-aot-autograd-stats",
|
|
action="store_true",
|
|
help="Generates AOT Autograd stats like how many graphs are sent to AOT",
|
|
)
|
|
parser.add_argument(
|
|
"--inductor-settings",
|
|
action="store_true",
|
|
help="Use same settings as --inductor for baseline comparisons",
|
|
)
|
|
parser.add_argument(
|
|
"--suppress-errors",
|
|
action="store_true",
|
|
help="Suppress errors instead of raising them",
|
|
)
|
|
parser.add_argument(
|
|
"--output",
|
|
help="Overrides the output filename",
|
|
)
|
|
parser.add_argument(
|
|
"--output-directory",
|
|
help="Overrides the directory to place output files.",
|
|
)
|
|
parser.add_argument(
|
|
"--disable-output",
|
|
action="store_true",
|
|
help="Disable writing of output files, e.g., for warm-up runs",
|
|
)
|
|
parser.add_argument(
|
|
"--baseline",
|
|
help="Compare with a prior --output",
|
|
)
|
|
parser.add_argument(
|
|
"--part",
|
|
default=None,
|
|
help="Specify the part of the model to run.",
|
|
)
|
|
parser.add_argument(
|
|
"--export-profiler-trace",
|
|
action="store_true",
|
|
help="exports trace of kineto profiler",
|
|
)
|
|
parser.add_argument(
|
|
"--profiler-trace-name",
|
|
"--profiler_trace_name",
|
|
help="Overwrites exported trace name",
|
|
)
|
|
parser.add_argument(
|
|
"--profile-details", action="store_true", help="More detailed profiler trace."
|
|
)
|
|
parser.add_argument(
|
|
"--export-perfdoctor",
|
|
action="store_true",
|
|
help="Export Chrome trace to perf doctor. (internal only)",
|
|
)
|
|
parser.add_argument(
|
|
"--diff-branch",
|
|
default=diff_branch_default,
|
|
help="delta current branch against given branch.",
|
|
)
|
|
parser.add_argument(
|
|
"--tag", default=None, help="Specify a tag to be included in csv files."
|
|
)
|
|
parser.add_argument(
|
|
"--explain",
|
|
action="store_true",
|
|
help="print some graph/op statistics during the run, similar to .explain()",
|
|
)
|
|
parser.add_argument(
|
|
"--stats",
|
|
action="store_true",
|
|
help="print graph counter stats",
|
|
)
|
|
parser.add_argument(
|
|
"--use-warm-peak-memory",
|
|
"--use_warm_peak_memory",
|
|
action="store_true",
|
|
help="Measure peak memory using a warm run to reduce autotuning noise",
|
|
)
|
|
parser.add_argument(
|
|
"--print-memory",
|
|
action="store_true",
|
|
help="print extra memory statistics",
|
|
)
|
|
parser.add_argument(
|
|
"--print-compilation-time",
|
|
action="store_true",
|
|
help="print compilation latency",
|
|
)
|
|
parser.add_argument(
|
|
"--print-dataframe-summary",
|
|
action="store_true",
|
|
help="print dataframe result used for calculating accuracy",
|
|
)
|
|
parser.add_argument(
|
|
"--disable-cudagraphs",
|
|
action="store_true",
|
|
help="Disables cudagraphs for Inductor",
|
|
)
|
|
parser.add_argument(
|
|
"--disable-split-reductions",
|
|
action="store_true",
|
|
help="Disables split reductions for Inductor",
|
|
)
|
|
parser.add_argument(
|
|
"--disable-persistent-reductions",
|
|
action="store_true",
|
|
help="Disables split reductions for Inductor",
|
|
)
|
|
parser.add_argument(
|
|
"--disable-divisible-by-16",
|
|
action="store_true",
|
|
help="Disables divisible by 16 hint to Triton for Inductor",
|
|
)
|
|
parser.add_argument(
|
|
"--inductor-compile-mode",
|
|
default=None,
|
|
help="torch.compile mode argument for inductor runs.",
|
|
)
|
|
parser.add_argument(
|
|
"--print-graph-breaks",
|
|
action="store_true",
|
|
help="Show a warning whenever graph break",
|
|
)
|
|
parser.add_argument(
|
|
"--log-graph-breaks",
|
|
action="store_true",
|
|
help="log graph breaks in a file",
|
|
)
|
|
parser.add_argument(
|
|
"--trace-on-xla",
|
|
action="store_true",
|
|
help="Whether to trace the model on XLA or on eager device",
|
|
)
|
|
parser.add_argument(
|
|
"--xla-tolerance",
|
|
type=float,
|
|
default=1e-2,
|
|
help="XLA needs a loose tolerance to pass the correctness check",
|
|
)
|
|
parser.add_argument(
|
|
"--collect-outputs",
|
|
action="store_true",
|
|
help="""Whether to collect outputs for training. Set this to true if we
|
|
want to verify the numerical correctness of graidents. But that may
|
|
cause time measurement not accurate""",
|
|
)
|
|
parser.add_argument(
|
|
"--enable-activation-checkpointing",
|
|
action="store_true",
|
|
help="Enables activation checkpointing for HF models",
|
|
)
|
|
parser.add_argument("--timing", action="store_true", help="Emits phase timing")
|
|
|
|
parser.add_argument(
|
|
"--progress",
|
|
action="store_true",
|
|
help="Print n/k models message between each model run.",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--timeout",
|
|
type=int,
|
|
default=2000,
|
|
help="timeout (second) for benchmarking.",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--per_process_memory_fraction",
|
|
type=float,
|
|
default=1,
|
|
help="Set per-process GPU memory fraction (limit) for reducing usable size and reproducing OOMs",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--no-translation-validation",
|
|
action="store_true",
|
|
help="Disable translation validation for accuracy builds.",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--minify",
|
|
action="store_true",
|
|
help="Enable minification when failure is below tolerance. Save repro script for each model.",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--compiled-autograd",
|
|
action="store_true",
|
|
help="Enables compiled autograd on compiled benchmark",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--profile_dynamo_cache_lookup",
|
|
"--profile-dynamo-cache-lookup",
|
|
action="store_true",
|
|
help="profiles TorchDynamo cache lookup",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--snapshot-memory",
|
|
"--snapshot_memory",
|
|
action="store_true",
|
|
help="Enables Memory Snapshot tool for memory deep dives: https://pytorch.org/blog/understanding-gpu-memory-1/",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--retain-output",
|
|
action="store_true",
|
|
help="Enables appending to the already existing output file if it exists \
|
|
instead of deleting it and creating a new one.",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--caching-precompile",
|
|
action="store_true",
|
|
help="Enables caching precompile, serializing artifacts to DynamoCache between runs",
|
|
)
|
|
|
|
group_latency = parser.add_mutually_exclusive_group()
|
|
group_latency.add_argument(
|
|
"--cold-start-latency",
|
|
"--cold_start_latency",
|
|
action="store_true",
|
|
help="Use a fresh triton cachedir when running each model, to force cold-start compile.",
|
|
)
|
|
group_latency.add_argument(
|
|
"--warm-start-latency",
|
|
"--warm_start_latency",
|
|
action="store_true",
|
|
help="Run model(s) twice and preserve caches in between to enable a 'warm start' on the 2nd run",
|
|
)
|
|
|
|
group_fuser = parser.add_mutually_exclusive_group()
|
|
# --nvfuser is now the default, keep the option to not break scripts
|
|
group_fuser.add_argument("--nvfuser", action="store_true", help=argparse.SUPPRESS)
|
|
group_fuser.add_argument("--nnc", action="store_true", help="enable NNC for GPUs")
|
|
|
|
group_prec = parser.add_mutually_exclusive_group()
|
|
group_prec.add_argument("--float16", action="store_true", help="cast model to fp16")
|
|
group_prec.add_argument(
|
|
"--bfloat16", action="store_true", help="cast model to bf16"
|
|
)
|
|
group_prec.add_argument("--float32", action="store_true", help="cast model to fp32")
|
|
group_prec.add_argument(
|
|
"--amp", action="store_true", help="use automatic mixed precision"
|
|
)
|
|
parser.add_argument(
|
|
"--amp-dtype",
|
|
choices=("bfloat16", "float16"),
|
|
help="the data type used with automatic mixed precision",
|
|
)
|
|
group_printout = parser.add_mutually_exclusive_group()
|
|
group_printout.add_argument(
|
|
"--verbose", "-v", action="store_true", help="enable verbose debug printouts"
|
|
)
|
|
group_printout.add_argument(
|
|
"--quiet", "-q", action="store_true", help="suppress debug printouts"
|
|
)
|
|
|
|
group = parser.add_mutually_exclusive_group()
|
|
group.add_argument(
|
|
"--coverage", action="store_true", help="(default) " + help(coverage_experiment)
|
|
)
|
|
group.add_argument(
|
|
"--overhead", action="store_true", help=help(overhead_experiment)
|
|
)
|
|
group.add_argument(
|
|
"--speedup-dynamo-ts",
|
|
action="store_true",
|
|
help="TorchDynamo frontend with torchscript backend",
|
|
)
|
|
group.add_argument(
|
|
"--speedup-fx2trt", action="store_true", help=help(speedup_experiment_fx2trt)
|
|
)
|
|
group.add_argument(
|
|
"--speedup-fx2trt-fp16",
|
|
action="store_true",
|
|
help=help(speedup_experiment_fx2trt),
|
|
)
|
|
group.add_argument(
|
|
"--print-fx",
|
|
action="store_true",
|
|
help="Print fx traces captured from model",
|
|
)
|
|
group.add_argument(
|
|
"--print-aten-ops",
|
|
action="store_true",
|
|
help="Print traces of aten ops captured by AOT autograd",
|
|
)
|
|
group.add_argument(
|
|
"--inductor",
|
|
action="store_true",
|
|
help="Measure speedup with TorchInductor",
|
|
)
|
|
group.add_argument(
|
|
"--quantization",
|
|
choices=[
|
|
"int8dynamic",
|
|
"int8weightonly",
|
|
"int4weightonly",
|
|
"autoquant",
|
|
"noquant",
|
|
],
|
|
default=None,
|
|
help="Measure speedup of torchao quantization with TorchInductor baseline",
|
|
)
|
|
group.add_argument(
|
|
"--export",
|
|
action="store_true",
|
|
help="Measure pass rate with export",
|
|
)
|
|
group.add_argument(
|
|
"--export-aot-inductor",
|
|
action="store_true",
|
|
help="Measure pass rate with Export+AOTInductor",
|
|
)
|
|
group.add_argument(
|
|
"--export-nativert",
|
|
action="store_true",
|
|
help="Measure pass rate with Export+NativeRT",
|
|
)
|
|
group.add_argument(
|
|
"--torchscript-jit-trace",
|
|
action="store_true",
|
|
help="Measure pass rate with TorchScript jit.trace",
|
|
)
|
|
group.add_argument(
|
|
"--xla", action="store_true", help="Compare TorchXLA to eager PyTorch"
|
|
)
|
|
group.add_argument(
|
|
"--backend",
|
|
choices=torch._dynamo.list_backends(exclude_tags=None),
|
|
help="measure speedup with a given backend",
|
|
)
|
|
group.add_argument("--nothing", action="store_true", help=help(null_experiment))
|
|
group.add_argument(
|
|
"--log-conv-args",
|
|
action="store_true",
|
|
help="Dump convolution input/weight/bias's shape/stride/dtype and other options to json",
|
|
)
|
|
group.add_argument(
|
|
"--recompile-profiler",
|
|
"--recompile_profiler",
|
|
action="store_true",
|
|
help="Run the dynamo recompilation profiler on each model.",
|
|
)
|
|
group.add_argument(
|
|
"--find-batch-sizes",
|
|
action="store_true",
|
|
help="finds the largest batch size that could fit on GPUs",
|
|
)
|
|
|
|
mode_group = parser.add_mutually_exclusive_group(required=True)
|
|
mode_group.add_argument(
|
|
"--accuracy",
|
|
action="store_true",
|
|
help="Checks accuracy with small batch size and eval mode",
|
|
)
|
|
mode_group.add_argument(
|
|
"--performance", action="store_true", help="Measures performance speedup"
|
|
)
|
|
mode_group.add_argument(
|
|
"--tolerance",
|
|
action="store_true",
|
|
help="extracts the tolerance for each model with small batch size and eval mode",
|
|
)
|
|
run_mode_group = parser.add_mutually_exclusive_group(required=True)
|
|
run_mode_group.add_argument(
|
|
"--training",
|
|
action="store_true",
|
|
help="Performs training",
|
|
)
|
|
run_mode_group.add_argument(
|
|
"--inference", action="store_true", help="Performs inference"
|
|
)
|
|
return parser.parse_args(args)
|
|
|
|
|
|
def process_caching_precompile():
|
|
"""
|
|
After every process_entry, save precompile artifacts to DynamoCache
|
|
"""
|
|
assert torch._dynamo.config.caching_precompile, (
|
|
"Caching precompile should be enabled with --caching-precompile"
|
|
)
|
|
from torch._dynamo.precompile_context import PrecompileContext
|
|
|
|
debug_info = PrecompileContext.save_to_dynamo_cache()
|
|
print(
|
|
f"Saved {len(debug_info['dynamo'])} precompile artifacts with {len(debug_info['backends'])} backends"
|
|
)
|
|
|
|
|
|
def process_entry(rank, runner, original_dir, args):
|
|
args.rank = rank
|
|
with maybe_init_distributed(
|
|
args.init_distributed,
|
|
rank=rank,
|
|
world_size=args.world_size,
|
|
port=args.distributed_master_port,
|
|
):
|
|
result = run(runner, args, original_dir)
|
|
if args.caching_precompile:
|
|
process_caching_precompile()
|
|
return result
|
|
|
|
|
|
def maybe_fresh_cache(args):
|
|
cache_dir_assigned = "TORCHINDUCTOR_CACHE_DIR" in os.environ
|
|
if not cache_dir_assigned and (
|
|
args.cold_start_latency or args.warm_start_latency or args.ci
|
|
):
|
|
return fresh_cache()
|
|
else:
|
|
return contextlib.nullcontext()
|
|
|
|
|
|
def main(runner, original_dir=None, args=None):
|
|
if original_dir:
|
|
os.chdir(original_dir)
|
|
args = parse_args() if not args else parse_args(args)
|
|
if args.baseline:
|
|
args.baseline = os.path.abspath(args.baseline)
|
|
|
|
if should_diff_branch(args):
|
|
import git
|
|
|
|
# We do this here so we error out earlier if there's an issue
|
|
repo = git.Repo()
|
|
if repo.is_dirty():
|
|
raise RuntimeError(
|
|
"--diff-branch called on dirty branch. Commit, stash, or reset."
|
|
)
|
|
main_branch = repo.active_branch.name
|
|
if main_branch == args.diff_branch:
|
|
raise RuntimeError(
|
|
f"--diff-branch: current branch is same as {args.diff_branch} branch, what are you diffing?"
|
|
)
|
|
|
|
with maybe_fresh_cache(args):
|
|
if args.caching_precompile:
|
|
os.environ["TORCH_CACHING_PRECOMPILE"] = "1"
|
|
torch._dynamo.config.caching_precompile = True
|
|
|
|
args.init_distributed = args.only and args.multiprocess
|
|
if args.init_distributed:
|
|
# NB: Do NOT query device count before CUDA initialization; we're
|
|
# going to overwrite CUDA_VISIBLE_DEVICES and this will result in
|
|
# https://github.com/pytorch/pytorch/issues/107300
|
|
device_count = torch.cuda.device_count()
|
|
if device_count <= 1:
|
|
log.warning(
|
|
"The use multiprocess flag is set but there are <= 1 devices available."
|
|
)
|
|
# multiprocess path
|
|
args.world_size = device_count
|
|
mp.spawn(
|
|
process_entry, args=(runner, original_dir, args), nprocs=device_count
|
|
)
|
|
elif args.only and args.warm_start_latency:
|
|
# Warm start mode. Enable FX graph caching and perform back-to-back runs in
|
|
# separate processes (but ensure the inductor cache is preserved across runs).
|
|
env = os.environ.copy()
|
|
env["TORCHINDUCTOR_FX_GRAPH_CACHE"] = "1"
|
|
cmd = [sys.executable] + sys.argv
|
|
cmd.remove("--warm-start-latency")
|
|
|
|
print(f"Performing cold-start run for {args.only}")
|
|
warmup_cmd = cmd + ["--repeat=1", "--disable-output"]
|
|
subprocess.check_call(warmup_cmd, timeout=args.timeout, env=env)
|
|
|
|
print(f"Performing warm-start run for {args.only}")
|
|
subprocess.check_call(cmd, timeout=args.timeout, env=env)
|
|
else:
|
|
# single process path just uses the main process
|
|
args.world_size = 1
|
|
process_entry(0, runner, original_dir, args)
|
|
|
|
|
|
def write_csv_when_exception(args, name: str, status: str, device=None):
|
|
print(status)
|
|
placeholder_batch_size = 0
|
|
devices = [device] if device is not None else args.devices
|
|
if args.accuracy:
|
|
headers = ["dev", "name", "batch_size", "accuracy"]
|
|
rows = [[device, name, placeholder_batch_size, status] for device in devices]
|
|
elif args.performance:
|
|
headers = ["dev", "name", "batch_size", "speedup", "abs_latency"]
|
|
rows = [[device, name, placeholder_batch_size, 0.0, 0.0] for device in devices]
|
|
else:
|
|
headers = []
|
|
rows = [[device, name, placeholder_batch_size, 0.0] for device in devices]
|
|
|
|
for row in rows:
|
|
write_outputs(output_filename, headers, row)
|
|
|
|
|
|
def run(runner, args, original_dir=None):
|
|
# Pass the parsed args object to benchmark runner object
|
|
torch._dynamo.reset()
|
|
runner.args = args
|
|
|
|
args.filter = args.filter or [r"."]
|
|
args.exclude = args.exclude or [r"^$"]
|
|
args.exclude_exact = args.exclude_exact or []
|
|
|
|
if args.inductor:
|
|
assert args.backend is None
|
|
args.backend = "inductor"
|
|
if args.quantization:
|
|
assert args.backend is None
|
|
args.backend = "torchao"
|
|
if args.dynamic_batch_only:
|
|
args.dynamic_shapes = True
|
|
torch._dynamo.config.assume_static_by_default = True
|
|
if args.dynamic_shapes:
|
|
if not args.dynamic_batch_only:
|
|
torch._dynamo.config.assume_static_by_default = False
|
|
if args.compiled_autograd:
|
|
torch._dynamo.config.compiled_autograd = True
|
|
if args.propagate_real_tensors:
|
|
# TODO: Separate flag for data dependent
|
|
torch._dynamo.config.capture_scalar_outputs = True
|
|
torch._dynamo.config.capture_dynamic_output_shape_ops = True
|
|
torch._functorch.config.fake_tensor_propagate_real_tensors = True
|
|
if args.specialize_int:
|
|
torch._dynamo.config.specialize_int = True
|
|
if args.ci:
|
|
if args.accuracy:
|
|
# Run fewer iterations when checking accuracy
|
|
args.repeat = min(args.repeat, 2)
|
|
|
|
# Set translation validation on by default on CI accuracy runs.
|
|
torch.fx.experimental._config.translation_validation = True
|
|
|
|
if args.ddp:
|
|
assert args.training, "DDP benchmark requires --training mode"
|
|
torch._dynamo.config.optimize_ddp = args.optimize_ddp_mode
|
|
if args.only == "dlrm":
|
|
log.error(
|
|
"DLRM+DDP is unsupported as it requires sharding the embedding layer separately from DDP"
|
|
)
|
|
return sys.exit(-1)
|
|
if args.accuracy:
|
|
# Use small batch size. We use >1 batch size to ensure we test
|
|
# batch_norm type of operators that work on batch dims.
|
|
# TODO - Go through the failures for batch size = 2
|
|
if args.batch_size is None:
|
|
if runner.suite_name == "huggingface":
|
|
args.batch_size = 1
|
|
elif runner.suite_name == "torchbench":
|
|
args.batch_size = 4
|
|
else:
|
|
# Larger batch size of TIMM models to have stable batch_norm
|
|
assert runner.suite_name == "timm_models"
|
|
args.batch_size = 8
|
|
|
|
# Remove sources of randomness
|
|
if runner.suite_name not in ("timm_models", "huggingface"):
|
|
# TODO - Using train mode for timm_models and HF models. Move to train mode for Torchbench as well.
|
|
args.use_eval_mode = True
|
|
inductor_config.fallback_random = True
|
|
if args.only is not None and args.only not in {
|
|
"alexnet",
|
|
"Background_Matting",
|
|
"pytorch_CycleGAN_and_pix2pix",
|
|
"pytorch_unet",
|
|
"Super_SloMo",
|
|
"vgg16",
|
|
# https://github.com/pytorch/pytorch/issues/96724
|
|
"Wav2Vec2ForCTC",
|
|
"Wav2Vec2ForPreTraining",
|
|
"sam",
|
|
"sam_fast",
|
|
"resnet50_quantized_qat",
|
|
"mobilenet_v2_quantized_qat",
|
|
"detectron2_maskrcnn",
|
|
"detectron2_maskrcnn_r_101_c4",
|
|
"detectron2_maskrcnn_r_101_fpn",
|
|
"detectron2_maskrcnn_r_50_c4",
|
|
"detectron2_maskrcnn_r_50_fpn",
|
|
"detectron2_fasterrcnn_r_101_c4",
|
|
"detectron2_fasterrcnn_r_101_dc5",
|
|
"detectron2_fasterrcnn_r_101_fpn",
|
|
"detectron2_fasterrcnn_r_50_c4",
|
|
"detectron2_fasterrcnn_r_50_dc5",
|
|
"detectron2_fasterrcnn_r_50_fpn",
|
|
}:
|
|
# some of the models do not support use_deterministic_algorithms
|
|
torch.use_deterministic_algorithms(True)
|
|
if args.devices == ["xpu"]:
|
|
torch.use_deterministic_algorithms(True, warn_only=True)
|
|
os.environ["CUBLAS_WORKSPACE_CONFIG"] = ":4096:8"
|
|
if args.only is not None and args.only in {
|
|
"DebertaForQuestionAnswering",
|
|
"nvidia_deeprecommender",
|
|
"crossvit_9_240",
|
|
}:
|
|
# These seem unhappy with numerics of larger cuBLASLt workspace
|
|
torch.backends.cuda.matmul.allow_bf16_reduced_precision_reduction = False
|
|
torch.backends.cuda.matmul.allow_fp16_reduced_precision_reduction = False
|
|
|
|
torch.backends.cudnn.deterministic = True
|
|
torch.backends.cudnn.allow_tf32 = False
|
|
torch.backends.cudnn.benchmark = False
|
|
torch.backends.cuda.matmul.allow_tf32 = False
|
|
torch.backends.cuda.allow_fp16_bf16_reduction_math_sdp(False)
|
|
|
|
torch.backends.mkldnn.deterministic = True
|
|
|
|
# Remove randomness when torch manual seed is called
|
|
patch_torch_manual_seed()
|
|
|
|
# Some models e.g. yolov3 assert batch size on n_gpus
|
|
if "CUDA_VISIBLE_DEVICES" not in os.environ and not args.multiprocess:
|
|
args.device_index = "0"
|
|
|
|
# Stricter check to disable fallbacks
|
|
args.suppress_errors = False
|
|
|
|
if not args.disable_cudagraphs:
|
|
runner.skip_models.update(
|
|
{
|
|
# xfail: https://github.com/pytorch/pytorch/issues/145773
|
|
"convit_base",
|
|
"llama",
|
|
"cm3leon_generate",
|
|
}
|
|
)
|
|
|
|
if args.device_index is not None:
|
|
if args.multiprocess:
|
|
print("Cannot specify both --device_index and --multiprocess")
|
|
return sys.exit(-1)
|
|
os.environ["CUDA_VISIBLE_DEVICES"] = args.device_index
|
|
|
|
elif args.performance:
|
|
# Ensure that we test on real scenarios
|
|
args.use_eval_mode = False
|
|
|
|
if args.partition_id > args.total_partitions or args.partition_id < 0:
|
|
print("Invalid partition id")
|
|
return sys.exit(-1)
|
|
|
|
if not args.devices:
|
|
if torch.cuda.is_available():
|
|
args.devices = ["cuda"]
|
|
else:
|
|
log.warning("torch.cuda.is_available() == False, using CPU")
|
|
args.devices = ["cpu"]
|
|
|
|
if args.devices != ["cpu"] and (HAS_CUDA or HAS_XPU):
|
|
global synchronize
|
|
synchronize = torch.cuda.synchronize if HAS_CUDA else torch.xpu.synchronize
|
|
|
|
if (
|
|
args.devices == ["cuda"]
|
|
and torch.cuda.get_device_properties(0).total_memory < 25 * 2**30
|
|
):
|
|
# OOM errors on an RTX 3090 with 24gb RAM
|
|
runner.skip_models.update(
|
|
{
|
|
# torchbench
|
|
"hf_Longformer",
|
|
"timm_nfnet",
|
|
"timm_efficientdet",
|
|
}
|
|
)
|
|
if args.training:
|
|
runner.skip_models.add("hf_T5")
|
|
|
|
if args.nnc:
|
|
torch._C._jit_override_can_fuse_on_cpu(True)
|
|
torch._C._jit_override_can_fuse_on_gpu(True)
|
|
torch._C._jit_set_texpr_fuser_enabled(True)
|
|
torch._C._jit_set_nvfuser_enabled(False)
|
|
|
|
if args.threads:
|
|
torch.set_num_threads(args.threads)
|
|
|
|
if args.verbose:
|
|
torch._logging.set_logs(dynamo=logging.DEBUG)
|
|
|
|
if args.print_graph_breaks:
|
|
torch._logging.set_logs(graph_breaks=True)
|
|
|
|
if args.quiet:
|
|
torch._logging.set_logs(dynamo=logging.ERROR)
|
|
|
|
torch._dynamo.config.suppress_errors = args.suppress_errors
|
|
|
|
if args.training:
|
|
runner.model_iter_fn = runner.forward_and_backward_pass
|
|
runner.skip_models.update(runner.skip_not_suitable_for_training_models)
|
|
else:
|
|
runner.model_iter_fn = runner.forward_pass
|
|
|
|
if args.fast:
|
|
runner.skip_models.update(runner.slow_models)
|
|
|
|
if args.devices == ["cpu"]:
|
|
arch = platform.machine()
|
|
runner.skip_models.update(runner.skip_models_for_cpu)
|
|
if arch == "aarch64":
|
|
runner.skip_models.update(runner.skip_models_for_cpu_aarch64)
|
|
elif args.devices == ["cuda"]:
|
|
runner.skip_models.update(runner.skip_models_for_cuda)
|
|
|
|
if not args.multiprocess:
|
|
runner.skip_models.update(runner.skip_multiprocess_models)
|
|
|
|
if args.freezing:
|
|
if args.devices == ["cpu"]:
|
|
runner.skip_models.update(runner.skip_models_for_freezing_cpu)
|
|
elif args.devices == ["cuda"]:
|
|
runner.skip_models.update(runner.skip_models_for_freezing_cuda)
|
|
|
|
if args.no_skip:
|
|
runner.skip_models.clear()
|
|
|
|
experiment = null_experiment
|
|
global \
|
|
current_name, \
|
|
current_device, \
|
|
current_batch_size, \
|
|
current_backend, \
|
|
current_mode, \
|
|
current_dtype, \
|
|
current_quantization, \
|
|
current_settings, \
|
|
output_filename, \
|
|
disable_output, \
|
|
optimize_ctx
|
|
optimize_ctx = contextlib.nullcontext()
|
|
|
|
if args.disable_output:
|
|
disable_output = True
|
|
|
|
if args.overhead:
|
|
optimize_ctx = torch._dynamo.optimize(dummy_fx_compile, nopython=args.nopython)
|
|
experiment = speedup_experiment
|
|
output_filename = "overheads.csv"
|
|
elif args.inductor:
|
|
inductor_config.debug = args.verbose
|
|
if args.threads:
|
|
inductor_config.cpp.threads = args.threads
|
|
|
|
optimize_ctx = functools.partial(
|
|
torch.compile,
|
|
backend="inductor",
|
|
fullgraph=args.nopython,
|
|
mode=args.inductor_compile_mode,
|
|
)
|
|
experiment = speedup_experiment
|
|
output_filename = "inductor.csv"
|
|
elif args.export:
|
|
optimize_ctx = export
|
|
experiment = speedup_experiment
|
|
output_filename = "export.csv"
|
|
elif args.export_nativert:
|
|
optimize_ctx = export_nativert
|
|
experiment = speedup_experiment
|
|
output_filename = "export_nativert.csv"
|
|
elif args.torchscript_jit_trace:
|
|
optimize_ctx = torchscript_jit_trace
|
|
experiment = speedup_experiment
|
|
output_filename = "torchscript_jit_trace.csv"
|
|
elif args.xla:
|
|
(dev,) = args.devices
|
|
os.environ["PJRT_DEVICE"] = {"cuda": "GPU", "cpu": "CPU"}[dev]
|
|
torch._dynamo.mark_dynamic = MagicMock()
|
|
experiment = xla
|
|
output_filename = "xla.csv"
|
|
elif args.speedup_dynamo_ts:
|
|
optimize_ctx = torch._dynamo.optimize("ts", nopython=args.nopython)
|
|
experiment = speedup_experiment
|
|
output_filename = "speedup_dynamo_ts.csv"
|
|
elif args.prims_nvfuser:
|
|
optimize_ctx = torch._dynamo.optimize("prims_nvfuser", nopython=args.nopython)
|
|
experiment = speedup_experiment
|
|
backend_str = "prims_nvfuser"
|
|
output_filename = f"accuracy_aot_{backend_str}.csv"
|
|
elif args.print_fx:
|
|
optimize_ctx = torch._dynamo.optimize(
|
|
print_fx,
|
|
nopython=args.nopython,
|
|
)
|
|
elif args.print_aten_ops:
|
|
optimize_ctx = torch._dynamo.optimize(
|
|
print_aten_ops,
|
|
nopython=args.nopython,
|
|
)
|
|
elif args.nothing:
|
|
optimize_ctx = nothing
|
|
experiment = speedup_experiment
|
|
output_filename = "nothing.csv"
|
|
elif args.backend or args.export_aot_inductor:
|
|
if args.export_aot_inductor:
|
|
assert not args.training, "AOTInductor only supports inference"
|
|
optimize_ctx = functools.partial(
|
|
export_aot_inductor, mode=args.inductor_compile_mode
|
|
)
|
|
|
|
# AOTInductor doesn't support control flow yet
|
|
runner.skip_models.update(runner.skip_models_due_to_control_flow)
|
|
runner.skip_models.update(runner.skip_models_due_to_export_not_supported)
|
|
elif args.backend == "torchao":
|
|
assert "cuda" in args.devices, "Quantization requires CUDA device."
|
|
assert args.bfloat16, "Quantization requires dtype bfloat16."
|
|
try:
|
|
from torchao_backend import setup_baseline, torchao_optimize_ctx
|
|
except ImportError:
|
|
try:
|
|
from .torchao_backend import setup_baseline, torchao_optimize_ctx
|
|
except ImportError:
|
|
from userbenchmark.dynamo.dynamobench.torchao_backend import (
|
|
setup_baseline,
|
|
torchao_optimize_ctx,
|
|
)
|
|
|
|
setup_baseline()
|
|
baseline_ctx = functools.partial(
|
|
torch.compile,
|
|
backend="inductor",
|
|
fullgraph=args.nopython,
|
|
mode=args.inductor_compile_mode,
|
|
)
|
|
model_iter_fn = baseline_ctx(runner.model_iter_fn)
|
|
|
|
# needed to avoid error that causes inconsistent timing due to:
|
|
# Unable to hit fast path of CUDAGraphs because of pending, uninvoked backwards
|
|
def model_iter_fn_and_mark_step(*args, **kwargs):
|
|
torch.compiler.cudagraph_mark_step_begin()
|
|
model_iter_fn(*args, **kwargs)
|
|
|
|
runner.model_iter_fn = model_iter_fn_and_mark_step
|
|
optimize_ctx = torchao_optimize_ctx(args.quantization)
|
|
else:
|
|
optimize_ctx = torch._dynamo.optimize(args.backend, nopython=args.nopython)
|
|
experiment = (
|
|
speedup_experiment if not args.backend == "torchao" else latency_experiment
|
|
)
|
|
if args.accuracy:
|
|
output_filename = f"accuracy_{args.backend}.csv"
|
|
elif args.tolerance:
|
|
output_filename = f"tolerance_{args.backend}.csv"
|
|
else:
|
|
output_filename = f"speedup_{args.backend}.csv"
|
|
elif args.recompile_profiler:
|
|
output_filename = "recompile_profiler_log.csv"
|
|
experiment = recompile_profiler_experiment
|
|
else:
|
|
optimize_ctx = torch._dynamo.optimize(
|
|
fx_insert_profiling, nopython=args.nopython
|
|
)
|
|
experiment = coverage_experiment
|
|
output_filename = "coverage.csv"
|
|
|
|
if args.only in runner.disable_cudagraph_models:
|
|
args.disable_cudagraphs = True
|
|
|
|
if args.inductor or args.backend == "inductor" or args.export_aot_inductor:
|
|
inductor_config.triton.cudagraphs = not args.disable_cudagraphs
|
|
inductor_config.triton.persistent_reductions = (
|
|
not args.disable_persistent_reductions
|
|
)
|
|
inductor_config.split_reductions = not args.disable_split_reductions
|
|
inductor_config.triton.divisible_by_16 = not args.disable_divisible_by_16
|
|
if args.inference:
|
|
inductor_config.freezing = args.freezing
|
|
if args.inductor_config:
|
|
for config in args.inductor_config:
|
|
key, value = config.split("=")
|
|
typ = type(inductor_config.__getattr__(key))
|
|
if issubclass(typ, bool):
|
|
assert value in ("0", "1", "True", "False")
|
|
value = value in ("1", "True")
|
|
elif issubclass(typ, (str, int, float)):
|
|
value = typ(value)
|
|
else:
|
|
raise NotImplementedError(typ)
|
|
inductor_config.__setattr__(key, value)
|
|
|
|
runner.setup_amp()
|
|
|
|
if args.output:
|
|
output_filename = args.output
|
|
|
|
if output_filename:
|
|
if args.output_directory:
|
|
output_filename = os.path.join(args.output_directory, output_filename)
|
|
else:
|
|
output_filename = os.path.join(
|
|
torch._dynamo.config.base_dir, output_filename
|
|
)
|
|
|
|
if args.find_batch_sizes and args.only:
|
|
for device in args.devices:
|
|
batch_size = runner.batch_size_finder(device, args.only)
|
|
print(args.only, batch_size)
|
|
write_outputs(output_filename, [], [args.only, batch_size])
|
|
return
|
|
|
|
args.profile_details = {}
|
|
if args.export_profiler_trace:
|
|
if args.profile_details:
|
|
args.profile_details = {
|
|
"record_shapes": True,
|
|
"profile_memory": True,
|
|
"with_stack": True,
|
|
"with_modules": True,
|
|
}
|
|
|
|
if args.profiler_trace_name is None:
|
|
if args.backend:
|
|
args.profiler_trace_name = args.backend
|
|
elif args.inductor:
|
|
args.profiler_trace_name = "inductor"
|
|
else:
|
|
args.profiler_trace_name = "profile"
|
|
else:
|
|
args.profiler_trace_name = args.profiler_trace_name
|
|
|
|
if args.no_translation_validation:
|
|
# Overwrite 'translation_validation' config, if specified.
|
|
torch.fx.experimental._config.translation_validation = False
|
|
|
|
experiment = functools.partial(experiment, args)
|
|
|
|
if args.only and should_diff_branch(args):
|
|
import git
|
|
|
|
repo = git.Repo()
|
|
main_branch = repo.active_branch.name
|
|
try:
|
|
# Adding diff-branch again to the args will override previous value
|
|
call_args = (
|
|
[sys.executable] + sys.argv + [f"--diff-branch={diff_branch_default}"]
|
|
)
|
|
# Run for main branch
|
|
subprocess.check_call(call_args + [f"--tag={main_branch}"])
|
|
# Run for comparison branch
|
|
repo.git.checkout(args.diff_branch)
|
|
subprocess.check_call(call_args + [f"--tag={args.diff_branch}"])
|
|
finally:
|
|
# Go back to main branch
|
|
repo.git.checkout(main_branch)
|
|
elif args.only:
|
|
model_name = args.only
|
|
for device in args.devices:
|
|
batch_size = args.batch_size
|
|
if args.batch_size_file:
|
|
batch_size = read_batch_size_from_file(
|
|
args, args.batch_size_file, model_name
|
|
)
|
|
if model_specified_by_path(args.only):
|
|
model, example_inputs = load_model_from_path(args.only)
|
|
name = model.__class__.__name__
|
|
model = model.to(device=device)
|
|
example_inputs = tree_map_only(
|
|
torch.Tensor, lambda x: x.to(device=device), example_inputs
|
|
)
|
|
else:
|
|
name = model_name
|
|
try:
|
|
with tqdm(desc="loading model"):
|
|
extra_args = []
|
|
if hasattr(args, "rank") and hasattr(args, "world_size"):
|
|
extra_args += [
|
|
"--rank",
|
|
str(args.rank),
|
|
"--world_size",
|
|
str(args.world_size),
|
|
]
|
|
|
|
if args.part:
|
|
(
|
|
device,
|
|
name,
|
|
model,
|
|
example_inputs,
|
|
batch_size,
|
|
) = runner.load_model(
|
|
device,
|
|
model_name,
|
|
batch_size=batch_size,
|
|
part=args.part,
|
|
extra_args=extra_args,
|
|
)
|
|
else:
|
|
if args.fsdp:
|
|
# Always load model on cpu for fsdp
|
|
# When initializing FSDP, we will use the cuda device if args.cuda is set
|
|
(
|
|
_,
|
|
name,
|
|
model,
|
|
example_inputs,
|
|
batch_size,
|
|
) = runner.load_model(
|
|
"cpu",
|
|
model_name,
|
|
batch_size=batch_size,
|
|
extra_args=extra_args,
|
|
)
|
|
else:
|
|
(
|
|
device,
|
|
name,
|
|
model,
|
|
example_inputs,
|
|
batch_size,
|
|
) = runner.load_model(
|
|
device,
|
|
model_name,
|
|
batch_size=batch_size,
|
|
extra_args=extra_args,
|
|
)
|
|
except Exception as e:
|
|
import traceback
|
|
|
|
mode = "train" if args.training else "eval"
|
|
print(f"{device:4} {mode:5} {name:34} ")
|
|
print(traceback.format_exc())
|
|
status = (
|
|
"model_fail_to_load"
|
|
if isinstance(e, NotImplementedError)
|
|
else "eager_fail_to_run"
|
|
)
|
|
write_csv_when_exception(args, name, status, device)
|
|
# NB: current_name/current_device not set, so pass
|
|
# explicitly
|
|
output_signpost(
|
|
{"name": name, "dev": device},
|
|
args,
|
|
runner.suite_name,
|
|
error=status,
|
|
)
|
|
continue # bad benchmark implementation
|
|
|
|
if args.trace_on_xla:
|
|
xla_dev = xm.xla_device()
|
|
model = model.to(device=xla_dev)
|
|
example_inputs = tree_map_only(
|
|
torch.Tensor, lambda x: x.to(device=xla_dev), example_inputs
|
|
)
|
|
|
|
current_name = name
|
|
current_device = device
|
|
current_batch_size = batch_size
|
|
current_backend = args.backend
|
|
current_mode = (
|
|
"training" if args.training else "inference" if args.inference else ""
|
|
)
|
|
if args.float16:
|
|
current_dtype = "float16"
|
|
elif args.bfloat16:
|
|
current_dtype = "bfloat16"
|
|
elif args.float32:
|
|
current_dtype = "float32"
|
|
elif args.amp:
|
|
current_dtype = "amp"
|
|
else:
|
|
current_dtype = ""
|
|
current_quantization = args.quantization
|
|
# Keep the remaining of the settings
|
|
current_settings = vars(args)
|
|
set_model_name(name)
|
|
|
|
# Look for stuff that looks like batch size, and mark it dynamic.
|
|
# Better integration would integrate directly with benchmark suite
|
|
# but cannot conveniently do this
|
|
# NB: This must be done late enough so that we don't do more
|
|
# conversions on the inputs
|
|
# NB: Assumes only the first batch-y like dimension is the batch
|
|
marked = False
|
|
|
|
def detect_and_mark_batch(t):
|
|
nonlocal marked
|
|
for i, s in enumerate(t.size()):
|
|
if s == batch_size:
|
|
torch._dynamo.maybe_mark_dynamic(t, i)
|
|
marked = True
|
|
break
|
|
|
|
if (
|
|
args.dynamic_batch_only
|
|
and batch_size > 1
|
|
and model_name not in CI_SKIP_DYNAMIC_BATCH_ONLY
|
|
):
|
|
tree_map_only(torch.Tensor, detect_and_mark_batch, example_inputs)
|
|
assert marked, f"nothing in example_inputs had a dim with {batch_size}"
|
|
|
|
if args.log_operator_inputs:
|
|
log_operator_inputs(
|
|
model, example_inputs, runner.model_iter_fn, name, args
|
|
)
|
|
continue
|
|
|
|
if args.per_process_memory_fraction != 1:
|
|
torch.cuda.set_per_process_memory_fraction(
|
|
args.per_process_memory_fraction
|
|
)
|
|
if model_name in DO_NOT_CAST_INPUTS:
|
|
model, _ = runner.cast_based_on_args(model, example_inputs)
|
|
|
|
else:
|
|
model, example_inputs = runner.cast_based_on_args(model, example_inputs)
|
|
runner.setup_amp(current_device)
|
|
guard_ctx = contextlib.nullcontext()
|
|
if name in runner.guard_on_nn_module_models:
|
|
guard_ctx = torch._dynamo.config.patch(guard_nn_modules=True)
|
|
|
|
inline_ctx = contextlib.nullcontext()
|
|
if name in runner.inline_inbuilt_nn_modules_models:
|
|
inline_ctx = torch._dynamo.config.patch(inline_inbuilt_nn_modules=True)
|
|
|
|
with guard_ctx:
|
|
with inline_ctx:
|
|
runner.run_one_model(
|
|
name,
|
|
model,
|
|
example_inputs,
|
|
optimize_ctx,
|
|
experiment,
|
|
explain=args.explain,
|
|
tag=args.tag,
|
|
batch_size=batch_size if args.dynamic_batch_only else None,
|
|
)
|
|
if args.generate_aot_autograd_stats:
|
|
stats_file = output_filename.split(".csv")[0] + "_stats.csv"
|
|
write_outputs(
|
|
stats_file,
|
|
("dev", "name", "batch_size", "total_aot_graphs", "ok_aot_graphs"),
|
|
[
|
|
current_device,
|
|
current_name,
|
|
current_batch_size,
|
|
*Stats.aot_summary(),
|
|
],
|
|
)
|
|
else:
|
|
metrics.purge_old_log_files()
|
|
if (
|
|
output_filename
|
|
and os.path.exists(output_filename)
|
|
and not args.retain_output
|
|
):
|
|
os.unlink(output_filename)
|
|
if original_dir:
|
|
os.chdir(original_dir)
|
|
model_names = list(runner.iter_model_names(args))
|
|
nmodels = len(model_names)
|
|
for i, name in enumerate(model_names):
|
|
current_name = name
|
|
if args.progress:
|
|
print(f"Running model {i + 1}/{nmodels}", flush=True)
|
|
|
|
try:
|
|
timeout = args.timeout
|
|
if should_diff_branch(args):
|
|
timeout *= 2
|
|
env = os.environ.copy()
|
|
if args.ci and name in CI_PRESERVE_COMPILE_DEBUG:
|
|
env["TORCH_COMPILE_DEBUG"] = "1"
|
|
subprocess.check_call(
|
|
[sys.executable] + sys.argv + [f"--only={name}"],
|
|
timeout=timeout,
|
|
env=env,
|
|
)
|
|
except subprocess.TimeoutExpired:
|
|
write_csv_when_exception(args, name, "timeout")
|
|
# NB: device is potentially multiple here, though we should
|
|
# try our best to report in anyway TODO
|
|
output_signpost(
|
|
{"name": name}, args, runner.suite_name, error="timeout"
|
|
)
|
|
except subprocess.CalledProcessError as e:
|
|
print("Run failed with return code: ", e.returncode, file=sys.stderr)
|
|
print("Output: ", e.output, file=sys.stderr)
|
|
print("Error: ", e.stderr, file=sys.stderr)
|
|
print_summary(output_filename, print_dataframe=args.print_dataframe_summary)
|
|
|
|
|
|
def log_operator_inputs(model, example_inputs, model_iter_fn, name, args):
|
|
mode = "training" if args.training else "eval"
|
|
output = os.path.join(os.path.dirname(args.output), f"{name}_{mode}.txt")
|
|
|
|
# TODO - add option for coalescing inputs over multiple runs
|
|
if os.path.exists(output):
|
|
print(f"Skipping {name}, {output} already exists")
|
|
return
|
|
|
|
print(f"Running {name}")
|
|
try:
|
|
from .microbenchmarks.operator_inp_utils import OperatorInputsMode
|
|
except ImportError:
|
|
from microbenchmarks.operator_inp_utils import OperatorInputsMode
|
|
|
|
operator_mode = OperatorInputsMode()
|
|
fake_tensor_mode = FakeTensorMode()
|
|
|
|
with torch._subclasses.fake_tensor.FakeCopyMode(fake_tensor_mode):
|
|
model_fake = copy.deepcopy(model)
|
|
example_inputs_fake = copy.deepcopy(example_inputs)
|
|
try:
|
|
with fake_tensor_mode, operator_mode:
|
|
model_iter_fn(model_fake, example_inputs_fake, collect_outputs=False)
|
|
except Exception as e:
|
|
print(f"{name} failed to run with fake tensors, trying real. Exception: {e}")
|
|
operator_mode = OperatorInputsMode()
|
|
try:
|
|
with operator_mode:
|
|
model_iter_fn(model, example_inputs, collect_outputs=False)
|
|
except Exception as e2:
|
|
print(f"{name} failed to run with real. Exception: {e2}")
|
|
raise
|
|
|
|
print(f"Writing output to {output}")
|
|
operator_mode.log_to_file(output)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
raise RuntimeError(
|
|
f"You shouldn't run {sys.argv[0]} directly, instead try timm_model.py, torchbench.py or huggingface.py"
|
|
)
|