Files
pytorch/benchmarks/dynamo/timm_models.py
Simon Fan e02c038a23 [dynamo][benchmarks] Stop benchmarking compile time of dead code (#145590)
FIXES https://github.com/pytorch/pytorch/issues/144775 frfr

See details on the problem: https://github.com/pytorch/pytorch/issues/144775#issuecomment-2611699385
We fixed some silent incorrectness, but it results in less nodes DCE'd. The benchmark iteration loop had some dead code which could contain side effect ops that aren't safe to DCE. The regression is expected.

This PR removes the compile time benchmarking of the dead code, which should reduce the noise of the benchmark and aligns with the benchmarking used by performance tests

New benchmark results:
```python
dev,name,batch_size,accuracy,calls_captured,unique_graphs,graph_breaks,unique_graph_breaks,autograd_captures,autograd_compiles,cudagraph_skips,compilation_latency
cuda,BartForConditionalGeneration,1,pass,897,1,0,0,0,0,0,39.322364  # after https://github.com/pytorch/pytorch/pull/144319
cuda,BartForConditionalGeneration,1,pass,897,1,0,0,0,0,0,38.972257  # before https://github.com/pytorch/pytorch/pull/144319
```

Pull Request resolved: https://github.com/pytorch/pytorch/pull/145590
Approved by: https://github.com/jansel
ghstack dependencies: #145447
2025-01-29 22:14:47 +00:00

442 lines
12 KiB
Python
Executable File

#!/usr/bin/env python3
import importlib
import logging
import os
import re
import subprocess
import sys
import warnings
try:
from .common import BenchmarkRunner, download_retry_decorator, load_yaml_file, main
except ImportError:
from common import BenchmarkRunner, download_retry_decorator, load_yaml_file, main
import torch
from torch._dynamo.testing import collect_results, reduce_to_scalar_loss
from torch._dynamo.utils import clone_inputs
# Enable FX graph caching
if "TORCHINDUCTOR_FX_GRAPH_CACHE" not in os.environ:
torch._inductor.config.fx_graph_cache = True
def pip_install(package):
subprocess.check_call([sys.executable, "-m", "pip", "install", package])
try:
importlib.import_module("timm")
except ModuleNotFoundError:
print("Installing PyTorch Image Models...")
pip_install("git+https://github.com/rwightman/pytorch-image-models")
finally:
from timm import __version__ as timmversion
from timm.data import resolve_data_config
from timm.models import create_model
TIMM_MODELS = {}
filename = os.path.join(os.path.dirname(__file__), "timm_models_list.txt")
with open(filename) as fh:
lines = fh.readlines()
lines = [line.rstrip() for line in lines]
for line in lines:
model_name, batch_size = line.split(" ")
TIMM_MODELS[model_name] = int(batch_size)
# TODO - Figure out the reason of cold start memory spike
BATCH_SIZE_DIVISORS = {
"beit_base_patch16_224": 2,
"convit_base": 2,
"convmixer_768_32": 2,
"convnext_base": 2,
"cspdarknet53": 2,
"deit_base_distilled_patch16_224": 2,
"gluon_xception65": 2,
"mobilevit_s": 2,
"pnasnet5large": 2,
"poolformer_m36": 2,
"resnest101e": 2,
"swin_base_patch4_window7_224": 2,
"swsl_resnext101_32x16d": 2,
"vit_base_patch16_224": 2,
"volo_d1_224": 2,
"jx_nest_base": 4,
}
REQUIRE_HIGHER_TOLERANCE = {
"fbnetv3_b",
"gmixer_24_224",
"hrnet_w18",
"inception_v3",
"mixer_b16_224",
"mobilenetv3_large_100",
"sebotnet33ts_256",
"selecsls42b",
"convnext_base",
}
REQUIRE_HIGHER_TOLERANCE_AMP = {
"poolformer_m36",
}
REQUIRE_EVEN_HIGHER_TOLERANCE = {
"levit_128",
"sebotnet33ts_256",
"beit_base_patch16_224",
"cspdarknet53",
}
# These models need higher tolerance in MaxAutotune mode
REQUIRE_EVEN_HIGHER_TOLERANCE_MAX_AUTOTUNE = {
"gluon_inception_v3",
}
REQUIRE_HIGHER_TOLERANCE_FOR_FREEZING = {
"adv_inception_v3",
"botnet26t_256",
"gluon_inception_v3",
"selecsls42b",
"swsl_resnext101_32x16d",
}
SCALED_COMPUTE_LOSS = {
"ese_vovnet19b_dw",
"fbnetc_100",
"mnasnet_100",
"mobilevit_s",
"sebotnet33ts_256",
}
FORCE_AMP_FOR_FP16_BF16_MODELS = {
"convit_base",
"xcit_large_24_p8_224",
}
SKIP_ACCURACY_CHECK_AS_EAGER_NON_DETERMINISTIC_MODELS = {
"xcit_large_24_p8_224",
}
REQUIRE_LARGER_MULTIPLIER_FOR_SMALLER_TENSOR = {
"inception_v3",
"mobilenetv3_large_100",
"cspdarknet53",
}
def refresh_model_names():
import glob
from timm.models import list_models
def read_models_from_docs():
models = set()
# TODO - set the path to pytorch-image-models repo
for fn in glob.glob("../pytorch-image-models/docs/models/*.md"):
with open(fn) as f:
while True:
line = f.readline()
if not line:
break
if not line.startswith("model = timm.create_model("):
continue
model = line.split("'")[1]
# print(model)
models.add(model)
return models
def get_family_name(name):
known_families = [
"darknet",
"densenet",
"dla",
"dpn",
"ecaresnet",
"halo",
"regnet",
"efficientnet",
"deit",
"mobilevit",
"mnasnet",
"convnext",
"resnet",
"resnest",
"resnext",
"selecsls",
"vgg",
"xception",
]
for known_family in known_families:
if known_family in name:
return known_family
if name.startswith("gluon_"):
return "gluon_" + name.split("_")[1]
return name.split("_")[0]
def populate_family(models):
family = {}
for model_name in models:
family_name = get_family_name(model_name)
if family_name not in family:
family[family_name] = []
family[family_name].append(model_name)
return family
docs_models = read_models_from_docs()
all_models = list_models(pretrained=True, exclude_filters=["*in21k"])
all_models_family = populate_family(all_models)
docs_models_family = populate_family(docs_models)
for key in docs_models_family:
del all_models_family[key]
chosen_models = set()
chosen_models.update(value[0] for value in docs_models_family.values())
chosen_models.update(value[0] for key, value in all_models_family.items())
filename = "timm_models_list.txt"
if os.path.exists("benchmarks"):
filename = "benchmarks/" + filename
with open(filename, "w") as fw:
for model_name in sorted(chosen_models):
fw.write(model_name + "\n")
class TimmRunner(BenchmarkRunner):
def __init__(self):
super().__init__()
self.suite_name = "timm_models"
@property
def _config(self):
return load_yaml_file("timm_models.yaml")
@property
def _skip(self):
return self._config["skip"]
@property
def skip_models(self):
return self._skip["all"]
@property
def force_amp_for_fp16_bf16_models(self):
return FORCE_AMP_FOR_FP16_BF16_MODELS
@property
def force_fp16_for_bf16_models(self):
return set()
@property
def get_output_amp_train_process_func(self):
return {}
@property
def skip_accuracy_check_as_eager_non_deterministic(self):
if self.args.accuracy and self.args.training:
return SKIP_ACCURACY_CHECK_AS_EAGER_NON_DETERMINISTIC_MODELS
return set()
@property
def guard_on_nn_module_models(self):
return {
"convit_base",
}
@property
def inline_inbuilt_nn_modules_models(self):
return {
"lcnet_050",
}
@download_retry_decorator
def _download_model(self, model_name):
model = create_model(
model_name,
in_chans=3,
scriptable=False,
num_classes=None,
drop_rate=0.0,
drop_path_rate=None,
drop_block_rate=None,
pretrained=True,
)
return model
def load_model(
self,
device,
model_name,
batch_size=None,
extra_args=None,
):
if self.args.enable_activation_checkpointing:
raise NotImplementedError(
"Activation checkpointing not implemented for Timm models"
)
is_training = self.args.training
use_eval_mode = self.args.use_eval_mode
channels_last = self._args.channels_last
model = self._download_model(model_name)
if model is None:
raise RuntimeError(f"Failed to load model '{model_name}'")
model.to(
device=device,
memory_format=torch.channels_last if channels_last else None,
)
self.num_classes = model.num_classes
data_config = resolve_data_config(
vars(self._args) if timmversion >= "0.8.0" else self._args,
model=model,
use_test_size=not is_training,
)
input_size = data_config["input_size"]
recorded_batch_size = TIMM_MODELS[model_name]
if model_name in BATCH_SIZE_DIVISORS:
recorded_batch_size = max(
int(recorded_batch_size / BATCH_SIZE_DIVISORS[model_name]), 1
)
batch_size = batch_size or recorded_batch_size
torch.manual_seed(1337)
input_tensor = torch.randint(
256, size=(batch_size,) + input_size, device=device
).to(dtype=torch.float32)
mean = torch.mean(input_tensor)
std_dev = torch.std(input_tensor)
example_inputs = (input_tensor - mean) / std_dev
if channels_last:
example_inputs = example_inputs.contiguous(
memory_format=torch.channels_last
)
example_inputs = [
example_inputs,
]
self.target = self._gen_target(batch_size, device)
self.loss = torch.nn.CrossEntropyLoss().to(device)
if model_name in SCALED_COMPUTE_LOSS:
self.compute_loss = self.scaled_compute_loss
if is_training and not use_eval_mode:
model.train()
else:
model.eval()
self.validate_model(model, example_inputs)
return device, model_name, model, example_inputs, batch_size
def iter_model_names(self, args):
# for model_name in list_models(pretrained=True, exclude_filters=["*in21k"]):
model_names = sorted(TIMM_MODELS.keys())
start, end = self.get_benchmark_indices(len(model_names))
for index, model_name in enumerate(model_names):
if index < start or index >= end:
continue
if (
not re.search("|".join(args.filter), model_name, re.IGNORECASE)
or re.search("|".join(args.exclude), model_name, re.IGNORECASE)
or model_name in args.exclude_exact
or model_name in self.skip_models
):
continue
yield model_name
def pick_grad(self, name, is_training):
if is_training:
return torch.enable_grad()
else:
return torch.no_grad()
def use_larger_multiplier_for_smaller_tensor(self, name):
return name in REQUIRE_LARGER_MULTIPLIER_FOR_SMALLER_TENSOR
def get_tolerance_and_cosine_flag(self, is_training, current_device, name):
cosine = self.args.cosine
tolerance = 1e-3
if self.args.freezing and name in REQUIRE_HIGHER_TOLERANCE_FOR_FREEZING:
# the conv-batchnorm fusion used under freezing may cause relatively
# large numerical difference. We need are larger tolerance.
# Check https://github.com/pytorch/pytorch/issues/120545 for context
tolerance = 8 * 1e-2
if is_training:
from torch._inductor import config as inductor_config
if name in REQUIRE_EVEN_HIGHER_TOLERANCE or (
inductor_config.max_autotune
and name in REQUIRE_EVEN_HIGHER_TOLERANCE_MAX_AUTOTUNE
):
tolerance = 8 * 1e-2
elif name in REQUIRE_HIGHER_TOLERANCE or (
self.args.amp and name in REQUIRE_HIGHER_TOLERANCE_AMP
):
tolerance = 4 * 1e-2
else:
tolerance = 1e-2
return tolerance, cosine
def _gen_target(self, batch_size, device):
return torch.empty((batch_size,) + (), device=device, dtype=torch.long).random_(
self.num_classes
)
def compute_loss(self, pred):
# High loss values make gradient checking harder, as small changes in
# accumulation order upsets accuracy checks.
return reduce_to_scalar_loss(pred)
def scaled_compute_loss(self, pred):
# Loss values need zoom out further.
return reduce_to_scalar_loss(pred) / 1000.0
def forward_pass(self, mod, inputs, collect_outputs=True):
with self.autocast(**self.autocast_arg):
return mod(*inputs)
def forward_and_backward_pass(self, mod, inputs, collect_outputs=True):
cloned_inputs = clone_inputs(inputs)
self.optimizer_zero_grad(mod)
with self.autocast(**self.autocast_arg):
pred = mod(*cloned_inputs)
if isinstance(pred, tuple):
pred = pred[0]
loss = self.compute_loss(pred)
self.grad_scaler.scale(loss).backward()
self.optimizer_step()
if collect_outputs:
return collect_results(mod, pred, loss, cloned_inputs)
return None
def timm_main():
logging.basicConfig(level=logging.WARNING)
warnings.filterwarnings("ignore")
main(TimmRunner())
if __name__ == "__main__":
timm_main()