mirror of
https://github.com/pytorch/pytorch.git
synced 2025-11-01 04:54:55 +08:00
Summary: This is a naive layering approroach till we have a better one. It could be c++ based and support diagonal execution. Not integrating into main LSTM API yet as this might be revised a bit. Would like to land so we can compare current implementation in the benchmark and also use this as an example of how LSTMs could be combined (as some folks are doing similar things with some variations). Later we can LSTM() support API of layered_LSTM() and also change it under the hood so it stacks cells into a bigger cell instead. This way if we make RNN op use a kind of a DAG net, then RNN op can provide more parallelizm in stacked cells. Reviewed By: urikz Differential Revision: D4936015 fbshipit-source-id: b1e25f12d985dda582f0c67d9a02508027e5497f
1066 lines
37 KiB
Python
1066 lines
37 KiB
Python
## @package rnn_cell
|
|
# Module caffe2.python.rnn_cell
|
|
from __future__ import absolute_import
|
|
from __future__ import division
|
|
from __future__ import print_function
|
|
from __future__ import unicode_literals
|
|
|
|
import numpy as np
|
|
import random
|
|
import functools
|
|
|
|
from caffe2.python.attention import (
|
|
AttentionType,
|
|
apply_regular_attention,
|
|
apply_recurrent_attention,
|
|
)
|
|
from caffe2.python import core, recurrent, workspace
|
|
from caffe2.python.cnn import CNNModelHelper
|
|
|
|
|
|
class RNNCell(object):
|
|
'''
|
|
Base class for writing recurrent / stateful operations.
|
|
|
|
One needs to implement 3 methods: _apply, prepare_input and get_state_names.
|
|
As a result base class will provice apply_over_sequence method, which
|
|
allows you to apply recurrent operations over a sequence of any length.
|
|
'''
|
|
def __init__(self, name, forward_only=False):
|
|
self.name = name
|
|
self.recompute_blobs = []
|
|
self.forward_only = forward_only
|
|
|
|
def scope(self, name):
|
|
return self.name + '/' + name if self.name is not None else name
|
|
|
|
def apply_over_sequence(
|
|
self,
|
|
model,
|
|
inputs,
|
|
seq_lengths,
|
|
initial_states,
|
|
outputs_with_grads=None,
|
|
):
|
|
preprocessed_inputs = self.prepare_input(model, inputs)
|
|
step_model = CNNModelHelper(name=self.name, param_model=model)
|
|
input_t, timestep = step_model.net.AddScopedExternalInputs(
|
|
'input_t',
|
|
'timestep',
|
|
)
|
|
states_prev = step_model.net.AddScopedExternalInputs(*[
|
|
s + '_prev' for s in self.get_state_names()
|
|
])
|
|
states = self._apply(
|
|
model=step_model,
|
|
input_t=input_t,
|
|
seq_lengths=seq_lengths,
|
|
states=states_prev,
|
|
timestep=timestep,
|
|
)
|
|
return recurrent.recurrent_net(
|
|
net=model.net,
|
|
cell_net=step_model.net,
|
|
inputs=[(input_t, preprocessed_inputs)],
|
|
initial_cell_inputs=zip(states_prev, initial_states),
|
|
links=dict(zip(states_prev, states)),
|
|
timestep=timestep,
|
|
scope=self.name,
|
|
outputs_with_grads=(
|
|
outputs_with_grads
|
|
if outputs_with_grads is not None
|
|
else self.get_outputs_with_grads()
|
|
),
|
|
recompute_blobs_on_backward=self.recompute_blobs,
|
|
forward_only=self.forward_only,
|
|
)
|
|
|
|
def apply(self, model, input_t, seq_lengths, states, timestep):
|
|
input_t = self.prepare_input(model, input_t)
|
|
return self._apply(model, input_t, seq_lengths, states, timestep)
|
|
|
|
def _apply(self, model, input_t, seq_lengths, states, timestep):
|
|
'''
|
|
A single step of a recurrent network.
|
|
|
|
model: CNNModelHelper object new operators would be added to
|
|
|
|
input_blob: single input with shape (1, batch_size, input_dim)
|
|
|
|
seq_lengths: blob containing sequence lengths which would be passed to
|
|
LSTMUnit operator
|
|
|
|
states: previous recurrent states
|
|
|
|
timestep: current recurrent iteration. Could be used together with
|
|
seq_lengths in order to determine, if some shorter sequences
|
|
in the batch have already ended.
|
|
'''
|
|
raise NotImplementedError('Abstract method')
|
|
|
|
def prepare_input(self, model, input_blob):
|
|
'''
|
|
If some operations in _apply method depend only on the input,
|
|
not on recurrent states, they could be computed in advance.
|
|
|
|
model: CNNModelHelper object new operators would be added to
|
|
|
|
input_blob: either the whole input sequence with shape
|
|
(sequence_length, batch_size, input_dim) or a single input with shape
|
|
(1, batch_size, input_dim).
|
|
'''
|
|
raise NotImplementedError('Abstract method')
|
|
|
|
def get_state_names(self):
|
|
'''
|
|
Return the names of the recurrent states.
|
|
It's required by apply_over_sequence method in order to allocate
|
|
recurrent states for all steps with meaningful names.
|
|
'''
|
|
raise NotImplementedError('Abstract method')
|
|
|
|
|
|
class LSTMCell(RNNCell):
|
|
|
|
def __init__(
|
|
self,
|
|
input_size,
|
|
hidden_size,
|
|
forget_bias,
|
|
memory_optimization,
|
|
name,
|
|
forward_only=False,
|
|
drop_states=False,
|
|
):
|
|
super(LSTMCell, self).__init__(name, forward_only)
|
|
self.input_size = input_size
|
|
self.hidden_size = hidden_size
|
|
self.forget_bias = float(forget_bias)
|
|
self.memory_optimization = memory_optimization
|
|
self.drop_states = drop_states
|
|
|
|
def _apply(
|
|
self,
|
|
model,
|
|
input_t,
|
|
seq_lengths,
|
|
states,
|
|
timestep,
|
|
):
|
|
hidden_t_prev, cell_t_prev = states
|
|
gates_t = model.FC(
|
|
hidden_t_prev,
|
|
self.scope('gates_t'),
|
|
dim_in=self.hidden_size,
|
|
dim_out=4 * self.hidden_size,
|
|
axis=2,
|
|
)
|
|
model.net.Sum([gates_t, input_t], gates_t)
|
|
hidden_t, cell_t = model.net.LSTMUnit(
|
|
[
|
|
hidden_t_prev,
|
|
cell_t_prev,
|
|
gates_t,
|
|
seq_lengths,
|
|
timestep,
|
|
],
|
|
list(self.get_state_names()),
|
|
forget_bias=self.forget_bias,
|
|
drop_states=self.drop_states,
|
|
)
|
|
model.net.AddExternalOutputs(hidden_t, cell_t)
|
|
if self.memory_optimization:
|
|
self.recompute_blobs = [gates_t]
|
|
return hidden_t, cell_t
|
|
|
|
def get_input_params(self):
|
|
return {
|
|
'weights': self.scope('i2h') + '_w',
|
|
'biases': self.scope('i2h') + '_b',
|
|
}
|
|
|
|
def get_recurrent_params(self):
|
|
return {
|
|
'weights': self.scope('gates_t') + '_w',
|
|
'biases': self.scope('gates_t') + '_b',
|
|
}
|
|
|
|
def prepare_input(self, model, input_blob):
|
|
return model.FC(
|
|
input_blob,
|
|
self.scope('i2h'),
|
|
dim_in=self.input_size,
|
|
dim_out=4 * self.hidden_size,
|
|
axis=2,
|
|
)
|
|
|
|
def get_state_names(self):
|
|
return (self.scope('hidden_t'), self.scope('cell_t'))
|
|
|
|
def get_outputs_with_grads(self):
|
|
return [0]
|
|
|
|
def get_output_size(self):
|
|
return self.hidden_size
|
|
|
|
|
|
def LSTM(model, input_blob, seq_lengths, initial_states, dim_in, dim_out,
|
|
scope, outputs_with_grads=(0,), return_params=False,
|
|
memory_optimization=False, forget_bias=0.0, forward_only=False,
|
|
drop_states=False):
|
|
'''
|
|
Adds a standard LSTM recurrent network operator to a model.
|
|
|
|
model: CNNModelHelper object new operators would be added to
|
|
|
|
input_blob: the input sequence in a format T x N x D
|
|
where T is sequence size, N - batch size and D - input dimention
|
|
|
|
seq_lengths: blob containing sequence lengths which would be passed to
|
|
LSTMUnit operator
|
|
|
|
initial_states: a tupple of (hidden_input_blob, cell_input_blob)
|
|
which are going to be inputs to the cell net on the first iteration
|
|
|
|
dim_in: input dimention
|
|
|
|
dim_out: output dimention
|
|
|
|
outputs_with_grads : position indices of output blobs which will receive
|
|
external error gradient during backpropagation
|
|
|
|
return_params: if True, will return a dictionary of parameters of the LSTM
|
|
|
|
memory_optimization: if enabled, the LSTM step is recomputed on backward step
|
|
so that we don't need to store forward activations for each
|
|
timestep. Saves memory with cost of computation.
|
|
|
|
forget_bias: forget gate bias (default 0.0)
|
|
|
|
forward_only: whether to create a backward pass
|
|
'''
|
|
cell = LSTMCell(
|
|
input_size=dim_in,
|
|
hidden_size=dim_out,
|
|
forget_bias=forget_bias,
|
|
memory_optimization=memory_optimization,
|
|
name=scope,
|
|
forward_only=forward_only,
|
|
drop_states=drop_states,
|
|
)
|
|
result = cell.apply_over_sequence(
|
|
model=model,
|
|
inputs=input_blob,
|
|
seq_lengths=seq_lengths,
|
|
initial_states=initial_states,
|
|
outputs_with_grads=outputs_with_grads,
|
|
)
|
|
if return_params:
|
|
result = list(result) + [{
|
|
'input': cell.get_input_params(),
|
|
'recurrent': cell.get_recurrent_params(),
|
|
}]
|
|
return tuple(result)
|
|
|
|
|
|
def GetLSTMParamNames():
|
|
weight_params = ["input_gate_w", "forget_gate_w", "output_gate_w", "cell_w"]
|
|
bias_params = ["input_gate_b", "forget_gate_b", "output_gate_b", "cell_b"]
|
|
return {'weights': weight_params, 'biases': bias_params}
|
|
|
|
|
|
def InitFromLSTMParams(lstm_pblobs, param_values):
|
|
'''
|
|
Set the parameters of LSTM based on predefined values
|
|
'''
|
|
weight_params = GetLSTMParamNames()['weights']
|
|
bias_params = GetLSTMParamNames()['biases']
|
|
for input_type in param_values.keys():
|
|
weight_values = [param_values[input_type][w].flatten() for w in weight_params]
|
|
wmat = np.array([])
|
|
for w in weight_values:
|
|
wmat = np.append(wmat, w)
|
|
bias_values = [param_values[input_type][b].flatten() for b in bias_params]
|
|
bm = np.array([])
|
|
for b in bias_values:
|
|
bm = np.append(bm, b)
|
|
|
|
weights_blob = lstm_pblobs[input_type]['weights']
|
|
bias_blob = lstm_pblobs[input_type]['biases']
|
|
cur_weight = workspace.FetchBlob(weights_blob)
|
|
cur_biases = workspace.FetchBlob(bias_blob)
|
|
|
|
workspace.FeedBlob(
|
|
weights_blob,
|
|
wmat.reshape(cur_weight.shape).astype(np.float32))
|
|
workspace.FeedBlob(
|
|
bias_blob,
|
|
bm.reshape(cur_biases.shape).astype(np.float32))
|
|
|
|
|
|
def cudnn_LSTM(model, input_blob, initial_states, dim_in, dim_out,
|
|
scope, recurrent_params=None, input_params=None,
|
|
num_layers=1, return_params=False):
|
|
'''
|
|
CuDNN version of LSTM for GPUs.
|
|
input_blob Blob containing the input. Will need to be available
|
|
when param_init_net is run, because the sequence lengths
|
|
and batch sizes will be inferred from the size of this
|
|
blob.
|
|
initial_states tuple of (hidden_init, cell_init) blobs
|
|
dim_in input dimensions
|
|
dim_out output/hidden dimension
|
|
scope namescope to apply
|
|
recurrent_params dict of blobs containing values for recurrent
|
|
gate weights, biases (if None, use random init values)
|
|
See GetLSTMParamNames() for format.
|
|
input_params dict of blobs containing values for input
|
|
gate weights, biases (if None, use random init values)
|
|
See GetLSTMParamNames() for format.
|
|
num_layers number of LSTM layers
|
|
return_params if True, returns (param_extract_net, param_mapping)
|
|
where param_extract_net is a net that when run, will
|
|
populate the blobs specified in param_mapping with the
|
|
current gate weights and biases (input/recurrent).
|
|
Useful for assigning the values back to non-cuDNN
|
|
LSTM.
|
|
'''
|
|
with core.NameScope(scope):
|
|
weight_params = GetLSTMParamNames()['weights']
|
|
bias_params = GetLSTMParamNames()['biases']
|
|
|
|
input_weight_size = dim_out * dim_in
|
|
upper_layer_input_weight_size = dim_out * dim_out
|
|
recurrent_weight_size = dim_out * dim_out
|
|
input_bias_size = dim_out
|
|
recurrent_bias_size = dim_out
|
|
|
|
def init(layer, pname, input_type):
|
|
input_weight_size_for_layer = input_weight_size if layer == 0 else \
|
|
upper_layer_input_weight_size
|
|
if pname in weight_params:
|
|
sz = input_weight_size_for_layer if input_type == 'input' \
|
|
else recurrent_weight_size
|
|
elif pname in bias_params:
|
|
sz = input_bias_size if input_type == 'input' \
|
|
else recurrent_bias_size
|
|
else:
|
|
assert False, "unknown parameter type {}".format(pname)
|
|
return model.param_init_net.UniformFill(
|
|
[],
|
|
"lstm_init_{}_{}_{}".format(input_type, pname, layer),
|
|
shape=[sz])
|
|
|
|
# Multiply by 4 since we have 4 gates per LSTM unit
|
|
first_layer_sz = input_weight_size + recurrent_weight_size + \
|
|
input_bias_size + recurrent_bias_size
|
|
upper_layer_sz = upper_layer_input_weight_size + \
|
|
recurrent_weight_size + input_bias_size + \
|
|
recurrent_bias_size
|
|
total_sz = 4 * (first_layer_sz + (num_layers - 1) * upper_layer_sz)
|
|
|
|
weights = model.param_init_net.UniformFill(
|
|
[], "lstm_weight", shape=[total_sz])
|
|
|
|
model.params.append(weights)
|
|
model.weights.append(weights)
|
|
|
|
lstm_args = {
|
|
'hidden_size': dim_out,
|
|
'rnn_mode': 'lstm',
|
|
'bidirectional': 0, # TODO
|
|
'dropout': 1.0, # TODO
|
|
'input_mode': 'linear', # TODO
|
|
'num_layers': num_layers,
|
|
'engine': 'CUDNN'
|
|
}
|
|
|
|
param_extract_net = core.Net("lstm_param_extractor")
|
|
param_extract_net.AddExternalInputs([input_blob, weights])
|
|
param_extract_mapping = {}
|
|
|
|
# Populate the weights-blob from blobs containing parameters for
|
|
# the individual components of the LSTM, such as forget/input gate
|
|
# weights and bises. Also, create a special param_extract_net that
|
|
# can be used to grab those individual params from the black-box
|
|
# weights blob. These results can be then fed to InitFromLSTMParams()
|
|
for input_type in ['input', 'recurrent']:
|
|
param_extract_mapping[input_type] = {}
|
|
p = recurrent_params if input_type == 'recurrent' else input_params
|
|
if p is None:
|
|
p = {}
|
|
for pname in weight_params + bias_params:
|
|
for j in range(0, num_layers):
|
|
values = p[pname] if pname in p else init(j, pname, input_type)
|
|
model.param_init_net.RecurrentParamSet(
|
|
[input_blob, weights, values],
|
|
weights,
|
|
layer=j,
|
|
input_type=input_type,
|
|
param_type=pname,
|
|
**lstm_args
|
|
)
|
|
if pname not in param_extract_mapping[input_type]:
|
|
param_extract_mapping[input_type][pname] = {}
|
|
b = param_extract_net.RecurrentParamGet(
|
|
[input_blob, weights],
|
|
["lstm_{}_{}_{}".format(input_type, pname, j)],
|
|
layer=j,
|
|
input_type=input_type,
|
|
param_type=pname,
|
|
**lstm_args
|
|
)
|
|
param_extract_mapping[input_type][pname][j] = b
|
|
|
|
(hidden_input_blob, cell_input_blob) = initial_states
|
|
output, hidden_output, cell_output, rnn_scratch, dropout_states = \
|
|
model.net.Recurrent(
|
|
[input_blob, cell_input_blob, cell_input_blob, weights],
|
|
["lstm_output", "lstm_hidden_output", "lstm_cell_output",
|
|
"lstm_rnn_scratch", "lstm_dropout_states"],
|
|
seed=random.randint(0, 100000), # TODO: dropout seed
|
|
**lstm_args
|
|
)
|
|
model.net.AddExternalOutputs(
|
|
hidden_output, cell_output, rnn_scratch, dropout_states)
|
|
|
|
if return_params:
|
|
param_extract = param_extract_net, param_extract_mapping
|
|
return output, hidden_output, cell_output, param_extract
|
|
else:
|
|
return output, hidden_output, cell_output
|
|
|
|
|
|
class LSTMWithAttentionCell(RNNCell):
|
|
|
|
def __init__(
|
|
self,
|
|
encoder_output_dim,
|
|
encoder_outputs,
|
|
decoder_input_dim,
|
|
decoder_state_dim,
|
|
name,
|
|
attention_type,
|
|
weighted_encoder_outputs,
|
|
forget_bias,
|
|
lstm_memory_optimization,
|
|
attention_memory_optimization,
|
|
forward_only=False,
|
|
):
|
|
super(LSTMWithAttentionCell, self).__init__(name, forward_only)
|
|
self.encoder_output_dim = encoder_output_dim
|
|
self.encoder_outputs = encoder_outputs
|
|
self.decoder_input_dim = decoder_input_dim
|
|
self.decoder_state_dim = decoder_state_dim
|
|
self.weighted_encoder_outputs = weighted_encoder_outputs
|
|
self.encoder_outputs_transposed = None
|
|
assert attention_type in [
|
|
AttentionType.Regular,
|
|
AttentionType.Recurrent,
|
|
]
|
|
self.attention_type = attention_type
|
|
self.lstm_memory_optimization = lstm_memory_optimization
|
|
self.attention_memory_optimization = attention_memory_optimization
|
|
|
|
def _apply(
|
|
self,
|
|
model,
|
|
input_t,
|
|
seq_lengths,
|
|
states,
|
|
timestep,
|
|
):
|
|
(
|
|
hidden_t_prev,
|
|
cell_t_prev,
|
|
attention_weighted_encoder_context_t_prev,
|
|
) = states
|
|
|
|
gates_concatenated_input_t, _ = model.net.Concat(
|
|
[hidden_t_prev, attention_weighted_encoder_context_t_prev],
|
|
[
|
|
self.scope('gates_concatenated_input_t'),
|
|
self.scope('_gates_concatenated_input_t_concat_dims'),
|
|
],
|
|
axis=2,
|
|
)
|
|
gates_t = model.FC(
|
|
gates_concatenated_input_t,
|
|
self.scope('gates_t'),
|
|
dim_in=self.decoder_state_dim + self.encoder_output_dim,
|
|
dim_out=4 * self.decoder_state_dim,
|
|
axis=2,
|
|
)
|
|
model.net.Sum([gates_t, input_t], gates_t)
|
|
|
|
hidden_t_intermediate, cell_t = model.net.LSTMUnit(
|
|
[
|
|
hidden_t_prev,
|
|
cell_t_prev,
|
|
gates_t,
|
|
seq_lengths,
|
|
timestep,
|
|
],
|
|
['hidden_t_intermediate', self.scope('cell_t')],
|
|
)
|
|
if self.attention_type == AttentionType.Recurrent:
|
|
(
|
|
attention_weighted_encoder_context_t,
|
|
self.attention_weights_3d,
|
|
attention_blobs,
|
|
) = apply_recurrent_attention(
|
|
model=model,
|
|
encoder_output_dim=self.encoder_output_dim,
|
|
encoder_outputs_transposed=self.encoder_outputs_transposed,
|
|
weighted_encoder_outputs=self.weighted_encoder_outputs,
|
|
decoder_hidden_state_t=hidden_t_intermediate,
|
|
decoder_hidden_state_dim=self.decoder_state_dim,
|
|
scope=self.name,
|
|
attention_weighted_encoder_context_t_prev=(
|
|
attention_weighted_encoder_context_t_prev
|
|
),
|
|
)
|
|
else:
|
|
(
|
|
attention_weighted_encoder_context_t,
|
|
self.attention_weights_3d,
|
|
attention_blobs,
|
|
) = apply_regular_attention(
|
|
model=model,
|
|
encoder_output_dim=self.encoder_output_dim,
|
|
encoder_outputs_transposed=self.encoder_outputs_transposed,
|
|
weighted_encoder_outputs=self.weighted_encoder_outputs,
|
|
decoder_hidden_state_t=hidden_t_intermediate,
|
|
decoder_hidden_state_dim=self.decoder_state_dim,
|
|
scope=self.name,
|
|
)
|
|
hidden_t = model.Copy(hidden_t_intermediate, self.scope('hidden_t'))
|
|
model.net.AddExternalOutputs(
|
|
cell_t,
|
|
hidden_t,
|
|
attention_weighted_encoder_context_t,
|
|
)
|
|
if self.attention_memory_optimization:
|
|
self.recompute_blobs.extend(attention_blobs)
|
|
if self.lstm_memory_optimization:
|
|
self.recompute_blobs.append(gates_t)
|
|
|
|
return hidden_t, cell_t, attention_weighted_encoder_context_t
|
|
|
|
def get_attention_weights(self):
|
|
# [batch_size, encoder_length, 1]
|
|
return self.attention_weights_3d
|
|
|
|
def prepare_input(self, model, input_blob):
|
|
if self.encoder_outputs_transposed is None:
|
|
self.encoder_outputs_transposed = model.Transpose(
|
|
self.encoder_outputs,
|
|
self.scope('encoder_outputs_transposed'),
|
|
axes=[1, 2, 0],
|
|
)
|
|
if self.weighted_encoder_outputs is None:
|
|
self.weighted_encoder_outputs = model.FC(
|
|
self.encoder_outputs,
|
|
self.scope('weighted_encoder_outputs'),
|
|
dim_in=self.encoder_output_dim,
|
|
dim_out=self.encoder_output_dim,
|
|
axis=2,
|
|
)
|
|
|
|
return model.FC(
|
|
input_blob,
|
|
self.scope('i2h'),
|
|
dim_in=self.decoder_input_dim,
|
|
dim_out=4 * self.decoder_state_dim,
|
|
axis=2,
|
|
)
|
|
|
|
def get_state_names(self):
|
|
return (
|
|
self.scope('hidden_t'),
|
|
self.scope('cell_t'),
|
|
self.scope('attention_weighted_encoder_context_t'),
|
|
)
|
|
|
|
def get_outputs_with_grads(self):
|
|
return [0, 4]
|
|
|
|
def get_output_size(self):
|
|
return self.decoder_state_dim + self.encoder_output_dim
|
|
|
|
|
|
def LSTMWithAttention(
|
|
model,
|
|
decoder_inputs,
|
|
decoder_input_lengths,
|
|
initial_decoder_hidden_state,
|
|
initial_decoder_cell_state,
|
|
initial_attention_weighted_encoder_context,
|
|
encoder_output_dim,
|
|
encoder_outputs,
|
|
decoder_input_dim,
|
|
decoder_state_dim,
|
|
scope,
|
|
attention_type=AttentionType.Regular,
|
|
outputs_with_grads=(0, 4),
|
|
weighted_encoder_outputs=None,
|
|
lstm_memory_optimization=False,
|
|
attention_memory_optimization=False,
|
|
forget_bias=0.0,
|
|
forward_only=False,
|
|
):
|
|
'''
|
|
Adds a LSTM with attention mechanism to a model.
|
|
|
|
The implementation is based on https://arxiv.org/abs/1409.0473, with
|
|
a small difference in the order
|
|
how we compute new attention context and new hidden state, similarly to
|
|
https://arxiv.org/abs/1508.04025.
|
|
|
|
The model uses encoder-decoder naming conventions,
|
|
where the decoder is the sequence the op is iterating over,
|
|
while computing the attention context over the encoder.
|
|
|
|
model: CNNModelHelper object new operators would be added to
|
|
|
|
decoder_inputs: the input sequence in a format T x N x D
|
|
where T is sequence size, N - batch size and D - input dimention
|
|
|
|
decoder_input_lengths: blob containing sequence lengths
|
|
which would be passed to LSTMUnit operator
|
|
|
|
initial_decoder_hidden_state: initial hidden state of LSTM
|
|
|
|
initial_decoder_cell_state: initial cell state of LSTM
|
|
|
|
initial_attention_weighted_encoder_context: initial attention context
|
|
|
|
encoder_output_dim: dimension of encoder outputs
|
|
|
|
encoder_outputs: the sequence, on which we compute the attention context
|
|
at every iteration
|
|
|
|
decoder_input_dim: input dimention (last dimension on decoder_inputs)
|
|
|
|
decoder_state_dim: size of hidden states of LSTM
|
|
|
|
attention_type: One of: AttentionType.Regular, AttentionType.Recurrent.
|
|
Determines which type of attention mechanism to use.
|
|
|
|
outputs_with_grads : position indices of output blobs which will receive
|
|
external error gradient during backpropagation
|
|
|
|
weighted_encoder_outputs: encoder outputs to be used to compute attention
|
|
weights. In the basic case it's just linear transformation of
|
|
encoder outputs (that the default, when weighted_encoder_outputs is None).
|
|
However, it can be something more complicated - like a separate
|
|
encoder network (for example, in case of convolutional encoder)
|
|
|
|
lstm_memory_optimization: recompute LSTM activations on backward pass, so
|
|
we don't need to store their values in forward passes
|
|
|
|
attention_memory_optimization: recompute attention for backward pass
|
|
|
|
forward_only: whether to create only forward pass
|
|
'''
|
|
cell = LSTMWithAttentionCell(
|
|
encoder_output_dim=encoder_output_dim,
|
|
encoder_outputs=encoder_outputs,
|
|
decoder_input_dim=decoder_input_dim,
|
|
decoder_state_dim=decoder_state_dim,
|
|
name=scope,
|
|
attention_type=attention_type,
|
|
weighted_encoder_outputs=weighted_encoder_outputs,
|
|
forget_bias=forget_bias,
|
|
lstm_memory_optimization=lstm_memory_optimization,
|
|
attention_memory_optimization=attention_memory_optimization,
|
|
forward_only=forward_only,
|
|
)
|
|
return cell.apply_over_sequence(
|
|
model=model,
|
|
inputs=decoder_inputs,
|
|
seq_lengths=decoder_input_lengths,
|
|
initial_states=(
|
|
initial_decoder_hidden_state,
|
|
initial_decoder_cell_state,
|
|
initial_attention_weighted_encoder_context,
|
|
),
|
|
outputs_with_grads=None,
|
|
)
|
|
|
|
|
|
class MILSTMCell(LSTMCell):
|
|
|
|
def _apply(
|
|
self,
|
|
model,
|
|
input_t,
|
|
seq_lengths,
|
|
states,
|
|
timestep,
|
|
):
|
|
(
|
|
hidden_t_prev,
|
|
cell_t_prev,
|
|
) = states
|
|
|
|
# hU^T
|
|
# Shape: [1, batch_size, 4 * hidden_size]
|
|
prev_t = model.FC(
|
|
hidden_t_prev, self.scope('prev_t'), dim_in=self.hidden_size,
|
|
dim_out=4 * self.hidden_size, axis=2)
|
|
# defining MI parameters
|
|
alpha = model.param_init_net.ConstantFill(
|
|
[],
|
|
[self.scope('alpha')],
|
|
shape=[4 * self.hidden_size],
|
|
value=1.0
|
|
)
|
|
beta1 = model.param_init_net.ConstantFill(
|
|
[],
|
|
[self.scope('beta1')],
|
|
shape=[4 * self.hidden_size],
|
|
value=1.0
|
|
)
|
|
beta2 = model.param_init_net.ConstantFill(
|
|
[],
|
|
[self.scope('beta2')],
|
|
shape=[4 * self.hidden_size],
|
|
value=1.0
|
|
)
|
|
b = model.param_init_net.ConstantFill(
|
|
[],
|
|
[self.scope('b')],
|
|
shape=[4 * self.hidden_size],
|
|
value=0.0
|
|
)
|
|
model.params.extend([alpha, beta1, beta2, b])
|
|
# alpha * (xW^T * hU^T)
|
|
# Shape: [1, batch_size, 4 * hidden_size]
|
|
alpha_tdash = model.net.Mul(
|
|
[prev_t, input_t],
|
|
self.scope('alpha_tdash')
|
|
)
|
|
# Shape: [batch_size, 4 * hidden_size]
|
|
alpha_tdash_rs, _ = model.net.Reshape(
|
|
alpha_tdash,
|
|
[self.scope('alpha_tdash_rs'), self.scope('alpha_tdash_old_shape')],
|
|
shape=[-1, 4 * self.hidden_size],
|
|
)
|
|
alpha_t = model.net.Mul(
|
|
[alpha_tdash_rs, alpha],
|
|
self.scope('alpha_t'),
|
|
broadcast=1,
|
|
use_grad_hack=1
|
|
)
|
|
# beta1 * hU^T
|
|
# Shape: [batch_size, 4 * hidden_size]
|
|
prev_t_rs, _ = model.net.Reshape(
|
|
prev_t,
|
|
[self.scope('prev_t_rs'), self.scope('prev_t_old_shape')],
|
|
shape=[-1, 4 * self.hidden_size],
|
|
)
|
|
beta1_t = model.net.Mul(
|
|
[prev_t_rs, beta1],
|
|
self.scope('beta1_t'),
|
|
broadcast=1,
|
|
use_grad_hack=1
|
|
)
|
|
# beta2 * xW^T
|
|
# Shape: [batch_szie, 4 * hidden_size]
|
|
input_t_rs, _ = model.net.Reshape(
|
|
input_t,
|
|
[self.scope('input_t_rs'), self.scope('input_t_old_shape')],
|
|
shape=[-1, 4 * self.hidden_size],
|
|
)
|
|
beta2_t = model.net.Mul(
|
|
[input_t_rs, beta2],
|
|
self.scope('beta2_t'),
|
|
broadcast=1,
|
|
use_grad_hack=1
|
|
)
|
|
# Add 'em all up
|
|
gates_tdash = model.net.Sum(
|
|
[alpha_t, beta1_t, beta2_t],
|
|
self.scope('gates_tdash')
|
|
)
|
|
gates_t = model.net.Add(
|
|
[gates_tdash, b],
|
|
self.scope('gates_t'),
|
|
broadcast=1,
|
|
use_grad_hack=1
|
|
)
|
|
# # Shape: [1, batch_size, 4 * hidden_size]
|
|
gates_t_rs, _ = model.net.Reshape(
|
|
gates_t,
|
|
[self.scope('gates_t_rs'), self.scope('gates_t_old_shape')],
|
|
shape=[1, -1, 4 * self.hidden_size],
|
|
)
|
|
|
|
hidden_t_intermediate, cell_t = model.net.LSTMUnit(
|
|
[hidden_t_prev, cell_t_prev, gates_t_rs, seq_lengths, timestep],
|
|
[self.scope('hidden_t_intermediate'), self.scope('cell_t')],
|
|
forget_bias=self.forget_bias,
|
|
drop_states=self.drop_states,
|
|
)
|
|
hidden_t = model.Copy(hidden_t_intermediate, self.scope('hidden_t'))
|
|
model.net.AddExternalOutputs(
|
|
cell_t,
|
|
hidden_t,
|
|
)
|
|
if self.memory_optimization:
|
|
self.recompute_blobs = [gates_t]
|
|
return hidden_t, cell_t
|
|
|
|
|
|
def MILSTM(model, input_blob, seq_lengths, initial_states, dim_in, dim_out,
|
|
scope, outputs_with_grads=(0,), memory_optimization=False,
|
|
forget_bias=0.0, forward_only=False, drop_states=False):
|
|
'''
|
|
Adds MI flavor of standard LSTM recurrent network operator to a model.
|
|
See https://arxiv.org/pdf/1606.06630.pdf
|
|
|
|
model: CNNModelHelper object new operators would be added to
|
|
|
|
input_blob: the input sequence in a format T x N x D
|
|
where T is sequence size, N - batch size and D - input dimention
|
|
|
|
seq_lengths: blob containing sequence lengths which would be passed to
|
|
LSTMUnit operator
|
|
|
|
initial_states: a tupple of (hidden_input_blob, cell_input_blob)
|
|
which are going to be inputs to the cell net on the first iteration
|
|
|
|
dim_in: input dimention
|
|
|
|
dim_out: output dimention
|
|
|
|
outputs_with_grads : position indices of output blobs which will receive
|
|
external error gradient during backpropagation
|
|
|
|
memory_optimization: if enabled, the LSTM step is recomputed on backward
|
|
step. So that we don't need to store forward activations for each timestep.
|
|
Saves memory with cost of computation.
|
|
|
|
forward_only run only forward pass
|
|
'''
|
|
cell = MILSTMCell(
|
|
input_size=dim_in,
|
|
hidden_size=dim_out,
|
|
forget_bias=forget_bias,
|
|
memory_optimization=memory_optimization,
|
|
name=scope,
|
|
forward_only=forward_only,
|
|
drop_states=drop_states,
|
|
)
|
|
result = cell.apply_over_sequence(
|
|
model=model,
|
|
inputs=input_blob,
|
|
seq_lengths=seq_lengths,
|
|
initial_states=initial_states,
|
|
outputs_with_grads=outputs_with_grads,
|
|
)
|
|
return tuple(result)
|
|
|
|
|
|
class MILSTMWithAttentionCell(LSTMWithAttentionCell):
|
|
|
|
def _apply(
|
|
self,
|
|
model,
|
|
input_t,
|
|
seq_lengths,
|
|
states,
|
|
timestep,
|
|
):
|
|
(
|
|
hidden_t_prev,
|
|
cell_t_prev,
|
|
attention_weighted_encoder_context_t_prev,
|
|
) = states
|
|
|
|
gates_concatenated_input_t, _ = model.net.Concat(
|
|
[hidden_t_prev, attention_weighted_encoder_context_t_prev],
|
|
[
|
|
self.scope('gates_concatenated_input_t'),
|
|
self.scope('_gates_concatenated_input_t_concat_dims'),
|
|
],
|
|
axis=2,
|
|
)
|
|
# hU^T
|
|
# Shape: [1, batch_size, 4 * hidden_size]
|
|
prev_t = model.FC(
|
|
gates_concatenated_input_t,
|
|
self.scope('prev_t'),
|
|
dim_in=self.decoder_state_dim + self.encoder_output_dim,
|
|
dim_out=4 * self.decoder_state_dim,
|
|
axis=2,
|
|
)
|
|
# defining MI parameters
|
|
alpha = model.param_init_net.ConstantFill(
|
|
[],
|
|
[self.scope('alpha')],
|
|
shape=[4 * self.decoder_state_dim],
|
|
value=1.0
|
|
)
|
|
beta1 = model.param_init_net.ConstantFill(
|
|
[],
|
|
[self.scope('beta1')],
|
|
shape=[4 * self.decoder_state_dim],
|
|
value=1.0
|
|
)
|
|
beta2 = model.param_init_net.ConstantFill(
|
|
[],
|
|
[self.scope('beta2')],
|
|
shape=[4 * self.decoder_state_dim],
|
|
value=1.0
|
|
)
|
|
b = model.param_init_net.ConstantFill(
|
|
[],
|
|
[self.scope('b')],
|
|
shape=[4 * self.decoder_state_dim],
|
|
value=0.0
|
|
)
|
|
model.params.extend([alpha, beta1, beta2, b])
|
|
# alpha * (xW^T * hU^T)
|
|
# Shape: [1, batch_size, 4 * hidden_size]
|
|
alpha_tdash = model.net.Mul(
|
|
[prev_t, input_t],
|
|
self.scope('alpha_tdash')
|
|
)
|
|
# Shape: [batch_size, 4 * hidden_size]
|
|
alpha_tdash_rs, _ = model.net.Reshape(
|
|
alpha_tdash,
|
|
[self.scope('alpha_tdash_rs'), self.scope('alpha_tdash_old_shape')],
|
|
shape=[-1, 4 * self.decoder_state_dim],
|
|
)
|
|
alpha_t = model.net.Mul(
|
|
[alpha_tdash_rs, alpha],
|
|
self.scope('alpha_t'),
|
|
broadcast=1,
|
|
use_grad_hack=1
|
|
)
|
|
# beta1 * hU^T
|
|
# Shape: [batch_size, 4 * hidden_size]
|
|
prev_t_rs, _ = model.net.Reshape(
|
|
prev_t,
|
|
[self.scope('prev_t_rs'), self.scope('prev_t_old_shape')],
|
|
shape=[-1, 4 * self.decoder_state_dim],
|
|
)
|
|
beta1_t = model.net.Mul(
|
|
[prev_t_rs, beta1],
|
|
self.scope('beta1_t'),
|
|
broadcast=1,
|
|
use_grad_hack=1
|
|
)
|
|
# beta2 * xW^T
|
|
# Shape: [batch_szie, 4 * hidden_size]
|
|
input_t_rs, _ = model.net.Reshape(
|
|
input_t,
|
|
[self.scope('input_t_rs'), self.scope('input_t_old_shape')],
|
|
shape=[-1, 4 * self.decoder_state_dim],
|
|
)
|
|
beta2_t = model.net.Mul(
|
|
[input_t_rs, beta2],
|
|
self.scope('beta2_t'),
|
|
broadcast=1,
|
|
use_grad_hack=1
|
|
)
|
|
# Add 'em all up
|
|
gates_tdash = model.net.Sum(
|
|
[alpha_t, beta1_t, beta2_t],
|
|
self.scope('gates_tdash')
|
|
)
|
|
gates_t = model.net.Add(
|
|
[gates_tdash, b],
|
|
self.scope('gates_t'),
|
|
broadcast=1,
|
|
use_grad_hack=1
|
|
)
|
|
# # Shape: [1, batch_size, 4 * hidden_size]
|
|
gates_t_rs, _ = model.net.Reshape(
|
|
gates_t,
|
|
[self.scope('gates_t_rs'), self.scope('gates_t_old_shape')],
|
|
shape=[1, -1, 4 * self.decoder_state_dim],
|
|
)
|
|
|
|
hidden_t_intermediate, cell_t = model.net.LSTMUnit(
|
|
[hidden_t_prev, cell_t_prev, gates_t_rs, seq_lengths, timestep],
|
|
[self.scope('hidden_t_intermediate'), self.scope('cell_t')],
|
|
)
|
|
|
|
if self.attention_type == AttentionType.Recurrent:
|
|
(
|
|
attention_weighted_encoder_context_t,
|
|
self.attention_weights_3d,
|
|
self.recompute_blobs,
|
|
) = (
|
|
apply_recurrent_attention(
|
|
model=model,
|
|
encoder_output_dim=self.encoder_output_dim,
|
|
encoder_outputs_transposed=self.encoder_outputs_transposed,
|
|
weighted_encoder_outputs=self.weighted_encoder_outputs,
|
|
decoder_hidden_state_t=hidden_t_intermediate,
|
|
decoder_hidden_state_dim=self.decoder_state_dim,
|
|
scope=self.name,
|
|
attention_weighted_encoder_context_t_prev=(
|
|
attention_weighted_encoder_context_t_prev
|
|
),
|
|
)
|
|
)
|
|
else:
|
|
(
|
|
attention_weighted_encoder_context_t,
|
|
self.attention_weights_3d,
|
|
self.recompute_blobs,
|
|
) = (
|
|
apply_regular_attention(
|
|
model=model,
|
|
encoder_output_dim=self.encoder_output_dim,
|
|
encoder_outputs_transposed=self.encoder_outputs_transposed,
|
|
weighted_encoder_outputs=self.weighted_encoder_outputs,
|
|
decoder_hidden_state_t=hidden_t_intermediate,
|
|
decoder_hidden_state_dim=self.decoder_state_dim,
|
|
scope=self.name,
|
|
)
|
|
)
|
|
hidden_t = model.Copy(hidden_t_intermediate, self.scope('hidden_t'))
|
|
model.net.AddExternalOutputs(
|
|
cell_t,
|
|
hidden_t,
|
|
attention_weighted_encoder_context_t,
|
|
)
|
|
return hidden_t, cell_t, attention_weighted_encoder_context_t
|
|
|
|
|
|
def _layered_LSTM(
|
|
model, input_blob, seq_lengths, initial_states,
|
|
dim_in, dim_out, scope, outputs_with_grads=(0,), return_params=False,
|
|
memory_optimization=False, forget_bias=0.0, forward_only=False,
|
|
drop_states=False, create_lstm=None):
|
|
params = locals() # leave it as a first line to grab all params
|
|
params.pop('create_lstm')
|
|
if not isinstance(dim_out, list):
|
|
return create_lstm(**params)
|
|
elif len(dim_out) == 1:
|
|
params['dim_out'] = dim_out[0]
|
|
return create_lstm(**params)
|
|
|
|
assert len(dim_out) != 0, "dim_out list can't be empty"
|
|
assert return_params is False, "return_params not supported for layering"
|
|
for i, output_dim in enumerate(dim_out):
|
|
params.update({
|
|
'dim_out': output_dim
|
|
})
|
|
output, last_output, all_states, last_state = create_lstm(**params)
|
|
params.update({
|
|
'input_blob': output,
|
|
'dim_in': output_dim,
|
|
'initial_states': (last_output, last_state),
|
|
'scope': scope + '_layer_{}'.format(i + 1)
|
|
})
|
|
return output, last_output, all_states, last_state
|
|
|
|
|
|
layered_LSTM = functools.partial(_layered_LSTM, create_lstm=LSTM)
|