mirror of
https://github.com/pytorch/pytorch.git
synced 2025-10-20 21:14:14 +08:00
Pull Request resolved: https://github.com/pytorch/pytorch/pull/80237 Approved by: https://github.com/albanD
113 lines
4.2 KiB
Python
113 lines
4.2 KiB
Python
import torch
|
|
from . import _functional as F
|
|
from .optimizer import Optimizer
|
|
|
|
__all__ = ['SparseAdam']
|
|
|
|
class SparseAdam(Optimizer):
|
|
r"""Implements lazy version of Adam algorithm suitable for sparse tensors.
|
|
|
|
In this variant, only moments that show up in the gradient get updated, and
|
|
only those portions of the gradient get applied to the parameters.
|
|
|
|
Args:
|
|
params (iterable): iterable of parameters to optimize or dicts defining
|
|
parameter groups
|
|
lr (float, optional): learning rate (default: 1e-3)
|
|
betas (Tuple[float, float], optional): coefficients used for computing
|
|
running averages of gradient and its square (default: (0.9, 0.999))
|
|
eps (float, optional): term added to the denominator to improve
|
|
numerical stability (default: 1e-8)
|
|
|
|
.. _Adam\: A Method for Stochastic Optimization:
|
|
https://arxiv.org/abs/1412.6980
|
|
"""
|
|
|
|
def __init__(self, params, lr=1e-3, betas=(0.9, 0.999), eps=1e-8):
|
|
if not 0.0 < lr:
|
|
raise ValueError("Invalid learning rate: {}".format(lr))
|
|
if not 0.0 < eps:
|
|
raise ValueError("Invalid epsilon value: {}".format(eps))
|
|
if not 0.0 <= betas[0] < 1.0:
|
|
raise ValueError("Invalid beta parameter at index 0: {}".format(betas[0]))
|
|
if not 0.0 <= betas[1] < 1.0:
|
|
raise ValueError("Invalid beta parameter at index 1: {}".format(betas[1]))
|
|
|
|
params = list(params)
|
|
|
|
sparse_params = []
|
|
for index, param in enumerate(params):
|
|
if isinstance(param, dict):
|
|
for d_index, d_param in enumerate(param.get("params", [])):
|
|
if d_param.is_sparse:
|
|
sparse_params.append([index, d_index])
|
|
elif param.is_sparse:
|
|
sparse_params.append(index)
|
|
if sparse_params:
|
|
raise ValueError(
|
|
f"Sparse params at indices {sparse_params}: SparseAdam requires dense parameter tensors"
|
|
)
|
|
|
|
defaults = dict(lr=lr, betas=betas, eps=eps)
|
|
super(SparseAdam, self).__init__(params, defaults)
|
|
|
|
@torch.no_grad()
|
|
def step(self, closure=None):
|
|
"""Performs a single optimization step.
|
|
|
|
Args:
|
|
closure (callable, optional): A closure that reevaluates the model
|
|
and returns the loss.
|
|
"""
|
|
loss = None
|
|
if closure is not None:
|
|
with torch.enable_grad():
|
|
loss = closure()
|
|
|
|
for group in self.param_groups:
|
|
params_with_grad = []
|
|
grads = []
|
|
exp_avgs = []
|
|
exp_avg_sqs = []
|
|
state_steps = []
|
|
eps = group['eps']
|
|
lr = group['lr']
|
|
beta1, beta2 = group['betas']
|
|
|
|
for p in group['params']:
|
|
if p.grad is not None:
|
|
params_with_grad.append(p)
|
|
if not p.grad.is_sparse:
|
|
raise RuntimeError('SparseAdam does not support dense gradients, please consider Adam instead')
|
|
grads.append(p.grad)
|
|
|
|
state = self.state[p]
|
|
|
|
# State initialization
|
|
if len(state) == 0:
|
|
state['step'] = 0
|
|
# Exponential moving average of gradient values
|
|
state['exp_avg'] = torch.zeros_like(p, memory_format=torch.preserve_format)
|
|
# Exponential moving average of squared gradient values
|
|
state['exp_avg_sq'] = torch.zeros_like(p, memory_format=torch.preserve_format)
|
|
|
|
exp_avgs.append(state['exp_avg'])
|
|
exp_avg_sqs.append(state['exp_avg_sq'])
|
|
|
|
# update the steps for each param group update
|
|
state['step'] += 1
|
|
# record the step after step update
|
|
state_steps.append(state['step'])
|
|
|
|
F.sparse_adam(params_with_grad,
|
|
grads,
|
|
exp_avgs,
|
|
exp_avg_sqs,
|
|
state_steps,
|
|
beta1=beta1,
|
|
beta2=beta2,
|
|
lr=group['lr'],
|
|
eps=group['eps'])
|
|
|
|
return loss
|